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Numerische Simulationen des
Kühlens und topologischer
Anregungen von
Quantengasen

Zusammenfassung

Die vorliegende Arbeit beschreibt die numerische Untersuchung der Erzeugung
ultrakalter Teilchen-Ensembles und die Manipulation von Wolken aus Bose-
Einstein-kondensierten Teilchen (BEK). Ultrakalte Teilchen-Ensembles werden
gewöhnlich in mehreren Kühlungsschritten erzeugt, von denen der letzte und
effektivste die Verdampfung von Teilchen aus der Falle ist. Unter besonderer
Berücksichtigung der Eigenheiten und Probleme, die sich bei den magnetischen
Auffang- und Kühlungsprozessen molekularen Sauerstoffs ergeben, wurde ein
Simulationsprogramm für den Verdampfungskühlungsprozeß entwickelt.

Zusätzlich wurde mit den Mitteln der Quantenchemie eine Potenzialener-
giefläche (PES) für den molekularen O2-O2 Kollisionsprozeß berechnet, um
verbesserte Daten für die Bestimmung elastischer und inelastischer Kollisions-
parameter zu gewinnen. In den quantenchemischen Berechnungen werden die
einzelnen Moleküle als starre Rotatoren behandelt und es wird ein ab initio
Ansatz gemacht, um die PES numerisch als Funktion des totalen molekularen
Spins, des intermolekularen Abstands und der relativen Molekülorientierung zu
bestimmen.

Für die Implementierung des Programms zur Simulation der Verdamp-
fungskühlung mussten etliche Algorithmen angepaßt und verbessert werden,
um das zu untersuchende physikalische Problem korrekt zu simulieren. Ins-
besondere müssen ein großer anteiliger Teilchenverlust aus der Magnetfalle, sehr
starke Dichteinhomogenitäten und ein weites Teilchenenergiespektrum konsis-
tent beschrieben werden. Das Programm wird benutzt, um den Verdamp-
fungskühlungsprozeß in harmonischen und in linearen Quadrupolmagnetfallen
zu untersuchen.

Zwecks der Simulation topologischer Anregungen wie Wirbel (Vortices) und
Solitonen in Bose-Einstein Kondensatwolken nahe der absoluten Temperatur
wurde von uns ein Simulationsprogramm entwickelt, das die dreidimension-
ale numerische zeitliche Entwicklung der quantenmechanischen makroskopis-
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chen Materiewellenfunktion auf modernen Arbeitsplatzrechnern erlaubt. Die
physikalische Beschreibung des Bose-Einstein Kondensats ist dabei gegeben
durch die nichtlineare Gross-Pitaevskii Gleichung. In Zusammenarbeit mit zwei
Experimentalphysikgruppen in Oxford/UK und Konstanz wurde eine Anzahl
verschiedener Fragestellungen modelliert und bearbeitet.

Eine Anwendung ist die Simulation der Reaktion eines Zentralvortexzu-
stands eines Bose-Einstein Kondensats auf äußerliche Störungen. Die Abhän-
gigkeit der kollektiven Anregungsenergien der Kondensatwolke von der Präsenz
von Wirbeln wird untersucht, und die resonante Anregung von Kelvin Moden
eines zentralen Vortexkerns wird gezeigt. Zusätzlich wird die Abhängigkeit
der Expansion einer BEK Wolke in einer räumlichen Richtung besonderer Fal-
lenstärke von der Abbaugeschwindigkeit eines residualen optischen oder mag-
netischen Fallenfeldes aufgezeigt. Dies ist insofern von praktischer Bedeutung,
als die Expansion von BEK Wolken besonders häufig als Standardmethode ex-
perimenteller destruktiver Beobachtungstechniken eingesetzt wird.

Eine weitere Anwendung unseres BEK Simulationsprogramms ist die Mo-
dellierung und Untersuchung der Solitonenbildung in BEK Wolken in periodis-
chen optischen Gitterpotenzialen. In solchen durch stehende Laser-Lichtwellen
erzeugten Potenzialen können helle Bandkantensolitonen experimentell präpa-
riert werden. Der Solitonenbildungsprozeß ist grundsätzlich eindimensional, er
kann allerdings im dreidimensionalen Raum näherungsweise nachgebildet wer-
den wenn die überzähligen Dimensionen durch ein besonders starkes Fallen-
potenzial eingezwängt werden. Die kleinskaligen Details der Solitonenprozesse
erfordern eine Abänderung des BEK Simulationsprogramms zur Ausnutzung
der radialen Wolkensymmetrie zwecks einer Reduktion der numerischen Kom-
plexität. Diese Entwicklungen erlauben eine quantitative Untersuchung und
Modellierung der Experimente, in denen solche Solitonen realisiert werden.



Abstract

This thesis describes the numerical investigation of the production of ultra-cold
particle ensembles and the manipulation of Bose-Einstein condensate (BEC)
clouds. Ultra-cold particle ensembles are commonly obtained by several cool-
ing steps, the last and most effective of which is the evaporation of particles
from a trap. A simulation program has been developed for the simulation of
the evaporative cooling process, paying particular attention to the intricacies
and problems encountered in the trapping and cooling processes of molecular
oxygen.

Additionally, for the purpose of calculating improved elastic and inelastic
collision data, needed in the evaporative cooling simulation program, a potential
energy surface (PES) for the molecular O2-O2 collision problem has been com-
puted using methods of quantum chemistry. In these computations, individual
molecules are treated as rigid rotators and a full ab-initio approach is used to
numerically derive the PES as a function of total molecular spin, intermolecular
distance and the orientation of the molecules.

For the evaporative cooling simulation program several algorithms had to be
adapted and improved in order to correctly simulate the physical system under
investigation. In particular, large fractional particle loss from the magnetic
trap, very strong density inhomogeneities and a large particle energy range
must be consistently controlled. The program is used to investigate cooling in
harmonic traps and in quadrupole linear magnetic traps.

For the investigation of topological excitations, such as vortices and soli-
tons in BEC clouds near the absolute temperature, we developed a simulation
program, which allows a three-dimensional numerical time propagation of the
quantum mechanical macroscopic matter-wavefunctions on modern worksta-
tion computers. The physical description of the BEC is given by the nonlinear
Gross-Pitaevskii equation. In cooperation with two experimental workgroups
in Oxford/UK and Konstanz, a number of different problems are modelled.

One application is the simulation of a central vortex state in a BEC cloud,
reacting to external perturbations. The dependence of collective cloud excita-
tion energies on the presence of vortices is investigated and the resonant excita-
tion of Kelvin wave excitation modes of a central vortex core is demonstrated.
Additionally, the dependence of BEC cloud expansion in strongly confined spa-
tial dimensions on the decay of residual optical and magnetic trap confinement
fields is demonstrated. This is of practical interest, because BEC cloud expan-
sion is heavily used as a common procedure in experimental destructive imaging
techniques.
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A second application of our BEC simulation program is the modelling and
investigation of soliton formation in BEC clouds, confined in periodic optical
lattices. Bright gap solitons can be prepared experimentally in such potentials,
which are realised by standing laser light fields. The soliton formation pro-
cess is essentially one-dimensional, it can, however, be approximated in three-
dimensional space by means of strong radial trap confinement. The fine scale
detail of the soliton processes requires an adaptation of the BEC simulation
program to exploit the radial symmetry of the problem in order to reduce the
numerical complexity. These developments allow a quantitative investigation
and modelling of experimental soliton realisations.
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Chapter 1

Introduction

1.1 Cold Atoms and Molecules

From cryogenic kelvin temperatures to room temperature and above, particles
in dilute gases can macroscopically be regarded as a collection of “billiard balls”
of specific small sizes, which bounce around at random in an entirely classical
fashion, undergoing occasional elastic collisions with neighbouring particles. On
a microscopic scale, however, the particle collision problem becomes more com-
plicated. Multi-particle effects of the atomic or molecular electronic structure
need to be taken into account in order to describe the scattering effects ac-
curately. Fine quantum mechanical details determine the simple macroscopic
picture of the billiard balls in terms of their collision properties, which we may
naively macroscopically associate with different ball sizes.

As the temperature decreases from kelvins to millikelvins, the macroscopic
properties of the atomic and molecular billiard balls change, just as if their
sizes were in some way dependent on the velocity of their motion. At such
low temperatures and respective collision energies, quantum mechanical effects
influence the scattering properties of atoms and molecules in ways, which are
completely counterintuitive from a classical point of view (Quantum scattering
will be discussed in more detail in section 2.1). The parameters determining
such scattering effects are the potential energy surfaces (PES), which describe
the inter-particle potentials for all possible spatial configurations of the collid-
ing particles. While PES for atomic collisions are fairly simple and isotropic,
molecular PES are generally much more intricate and anisotropic. Such collision
data is difficult to measure experimentally, especially for particle species, which
have so far not been cooled to low millikelvin temperatures. To investigate the
feasibility of the trapping and cooling of “new” species, such as molecular oxy-
gen, collision data may be derived from PES, which are obtained theoretically
by means of quantum chemical ab initio calculations. In ab initio calculations,
the inter-particle potential is calculated “from the beginning”, using the basic
known system features, such as electronic orbitals, particle distances and the
quantum mechanical properties of atomic or molecular electronic structure. In
the process of the present work we have conducted such calculations for the
PES of oxygen molecules (described in chapter 3).

1



2 CHAPTER 1. INTRODUCTION

Cold dilute gas samples of atoms and molecules, trapped magnetically [1]
or optically [2] in particle traps, which can be experimentally prepared in vac-
uum apparatuses, are of great scientific interest. Reductions in temperature
significantly decrease all thermal noise and thus allow vast improvements in the
precision measurement of fundamental constants and time [3].
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Figure 1.1: Illustration of 500 particles in a three-dimensional isotropic har-
monic trap (with projection of particle positions into three planes). Particles
are randomly sampled from a normal distribution in all spatial directions. Cool-
ing can be achieved by removing the fastest particles, which also have the largest
trap oscillation amplitudes and can thus be selected using a spatial cutoff.

A further temperature T decrease to microkelvins (µK) can be achieved by
laser cooling or evaporative cooling. The de Broglie wavelength of the trapped
particles, which is λ = h/

√
2πmkBT (where m is the particle mass, kB is

the Boltzmann constant and h is the Planck constant) increases, and parti-
cles become more and more wave-like, acting as individual wave packets with
momentum-position uncertainty. Wave packet overlap at further decreased tem-
peratures and increased densities marks the beginning of quantum statistical
effects, eventually leading to Bose-Einstein condensation (BEC) at tempera-
tures on the nanokelvin scale. At this point the individual wave packets form
one giant single coherent matterwave. To achieve the enormous temperature
decrease of nine orders of magnitude, counting from cryogenic kelvin tempera-
tures, several cooling methods need to be applied to the trapped samples.

1.2 Evaporative Cooling

While cooling to cryogenic temperatures in the order of kelvins has been possi-
ble for many decades using standard cryogenic methods of simple liquid-gaseous
phase transitions with liquid Helium as a coolant, or the 3He-4He dilution refrig-
erator, temperatures in the order of µK have only been reached after the advent
of evaporative cooling and optical laser cooling methods [4]. Laser cooling, how-
ever, is only available for certain atomic species, which have the appropriate
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spectral level schemes. But it has the big advantage that the cooling process
does not deplete the trapped population. On the contrary, optical laser cooling
methods can be used to load large particle numbers into magnetic traps. Cryo-
genic setups are usually not required for optically trappable particle species,
since they can be optically decelerated and trapped from a background gas at
room temperature. Thus the trap loading process is much more efficient than in
purely magnetic setups with simple background buffer gas cooling and without
optical cooling.

Evaporative cooling is a more universally applicable cooling method. It was
proposed by Hess in 1986 for the cooling of spin polarised hydrogen, magneti-
cally trapped at cryogenic temperatures [5]. The evaporative cooling method’s
fundamental principle is well known from daily life, as all steaming hot cups
lose heat in a similar way, evaporating the “hottest” part (or “tail”) of the ther-
mal Maxwell-Boltzmann particle distribution. In atomic and molecular traps,
this method can be applied to remove the fastest-moving particle fraction, re-
taining a colder but smaller sample. The remaining sample will consequently
rethermalise by means of elastic collisions, reproducing a predictable fraction
of fast-moving (“hot”) particles. This allows the process to proceed to very
low temperatures as the fastest particles are continuously removed by spatially
selective radio-frequency state transfer.

While both laser cooling and evaporative cooling allow the reaching of µK
temperatures (starting from cryogenically precooled particles in the evaporative
cooling case), only the combination of both techniques led to the production
of particle samples, which are colder than anything else in the universe, un-
dergoing Bose-Einstein condensation at temperatures of merely nanokelvins.
Evaporative cooling is typically used as a last cooling step to reach tempera-
tures significantly below the photon recoil energy, starting with high particle
numbers from an optically precooled sample at µK temperature.

In this work we have developed a simulation program for trapped particle
ensembles undergoing evaporative cooling in different types of magnetic and op-
tical traps, which allows particles at cryogenic temperatures to be cooled down
to temperatures close to the BEC transition threshold. Several modifications
to the standard Direct Simulation Monte Carlo (DSMC) procedure, which is
known from molecular gas dynamics, have been necessary to allow a description
of trapped particle ensembles. We describe our work in this area in chapter 4.

1.3 Bose-Einstein Condensation

Bose-Einstein condensates (BEC) are often called a “fifth state of matter”, in
addition to the better known other four states represented by solids, liquids,
gases and plasmas. Bose-Einstein condensation describes the process of a phase
transition, which only results from the quantum statistics of identical bosonic
particles. Below a critical very low temperature Tc in the order of nanokelvins,
bosons (which are particles of integer spin) accumulate in the lowest quantum
state, an effect predicted by Einstein and Bose in 1925.

This effect occurs at a high phase space density, i.e. at high particle number
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density and extremely low temperature, when the de Broglie wavelengths of the
individual particles approach the size of the inter-particle separation, leading
to a spatial overlap. Many physical systems owe their properties to quantum
degeneracy and the phenomenon of Bose-Einstein condensation, but it took 15
years from the prediction of BEC before this connection was made. Better
known effects are the superfluidity of liquid helium and the superconductivity
of many materials at cryogenic temperatures. Effects in other physical systems,
such as excitons in semiconductors, and properties of nuclear and subnuclear
matter are also due to bosonic quantum statistics [6].

Liquid helium at low kelvin temperatures was found to owe its superfluid
properties to Bose-Einstein condensation effects. However, interparticle inter-
actions in the 3He and 4He quantum liquids are fairly strong, and thus the con-
densate fraction is very small, with a quantum depletion of 90%. The properties
of the weakly interacting dilute degenerate quantum gases of atomic vapours
are quite different and have very high condensate fractions with less than 1%
quantum depletion in alkalis, according to the Bogoliubov theory of condensate
excitations. The conditions, under which BEC in such dilute and weakly inter-
acting gases can occur, are extreme by all standards and for many decades it
could not be experimentally achieved.

The first initially unsuccessful efforts to achieve BEC in dilute gases were
made with cryogenically cooled spin-polarised hydrogen. Significant progress
in the field was made only after the advent of magnetic trapping [1] and laser
optical cooling [4], which made cooling to µK temperatures possible. In 1997
S. Chu, C. Cohen-Tannoudji and W. Phillips were awarded the Nobel Prize for
their theoretical and experimental development of optical cooling techniques.
BEC was finally reached in 1995 [7], after combining the magneto-optical cool-
ing techniques with evaporative cooling to reach the critical densities in phase
space and the nanokelvin BEC transition temperature. Bose-Einstein conden-
sates of a growing number of different atomic species have been experimentally
realised since 1995 [7,8,9,10,11,12], making BEC more than just a phenomenon
of statistical physics.– It can be regarded as an entirely new window into the
quantum world, which is particularly valuable, because it allows direct experi-
ments with macroscopic matter-waves.

In a way, the relationship between ordinary matter and a coherent BEC
matterwave is the same as the relationship between the incoherent light of a
lightbulb and the coherent light of a laser. In both cases of the laser and the
BEC, the bosonic quantum statistics lead to a pure macroscopic population of
just a single quantum state. The mean population of a single particle state in
Bose-Einstein quantum statistics can be described as

〈n〉 =
1

e
ε−µ
kBT − 1

, (1.1)

where ε is the energy of the state and µ is the chemical potential in the grand
canonical ensemble. The critical temperature Tc, for which e(ε−µ)/(kBTc) = 1
and all ensemble bosons undergo Bose-Einstein condensation into the lowest
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energetic state, is [13]

Tc =
2π~

2

mkB

(

2.612

ρ

) 2
3

, (1.2)

where ρ = N/V is the mean particle density of the system and m is the particle
mass. The numerical value arises from the value ζ(3/2) ≈ 2.612 of the Riemann
zeta function in the theoretical derivation [14,15].

Figure 1.2: Temperature and energy dependence of mean state occupa-
tion numbers in bosonic Bose-Einstein (dashed, green) and fermionic Fermi-
Dirac (dot-dashed, blue) quantum statistics, compared with classical Maxwell-
Boltzmann statistics (solid, red).

Figure 1.2 shows the single state population for classical Maxwell-Boltzmann
and for Fermi-Dirac and Bose-Einstein quantum statistics. Note the divergence
at (ε− µ)/(kBT ) = 1 in BE quantum statistics, leading to the phenomenon of
BEC.

The quantum degenerate regime of BEC of dilute gases near the absolute
temperature is the subject of the second part of this work. Using a computer
simulation program, which we have developed, we numerically investigated sev-
eral aspects of the resulting macroscopic matter-wavefunctions. More details
about the properties of BEC and methods to find numerical solutions of BEC
problems will be presented in chapter 5.

1.4 Computer simulations

Computational physics is often regarded as a new segment in science, linked
heavily into the theoretical side but exhibiting a profound experimental ap-
proach. Using the mathematical foundations of theoretical physics, computa-
tional physics creates virtual laboratories, where models can be investigated
using experimental techniques. A computer simulation represents an imita-
tion of a real physical system, incorporating all of the best known theoretical
knowledge about the system, or making well justified simplifications. Thus a
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numerical simulation implements certain or all known features of the behaviour
of a real physical system or of an abstract mathematical model by means of the
deterministic behaviour of a universally programmable computer.

Such simulational imitations of real systems are important in situations,
where detailed direct observations on the real physical system would be de-
structive or prohibitively expensive. Furthermore, simulations of mathematical
abstract models can lead to new discoveries, and simulations can be used to
refine models and the theoretical understanding of complicated systems.

With numerical processing power of computers still continuously improving
at an amazing pace for the forseeable future [16], computational physics in
general is rapidly gaining importance in all areas of science and technology.

The functional basis of these new physics methods are the computer pro-
gram codes developed to represent the physical systems under investigation.
Since the resulting code represents an experimental lab setup, in principle it
deserves the same amount of scientific scrutiny as any real experiment used for
the production of published data. Unfortunately, however, in computational
physics openness concerning program codes has been lacking, leading to irre-
producible data and a lot of duplicated work by groups trying to reproduce
third party numerical results. The author acknowledges this important point,
also expressed in [17], and has made an effort to keep his computer program
codes clean, readable and modular, for future re-use by others.

1.5 Motivation for this work

In the past few years BEC of many different atomic species has been achieved,
and the process is slowly becoming a standard procedure in many laboratories
around the world. The consistent and reliable production of condensates with
very large particle numbers and the condensation of molecular gases, however,
still poses great challenges in experimental and theoretical physics. Ultra-cold
molecular samples and, ultimately, molecular BEC are of fundamental interest,
as they will doubtlessly lead to better and more precise insights into molecular
structure and quantum mechanical properties. Eventually it may even become
possible to achieve ultra-low temperatures in ensembles of “macroscopic” par-
ticles such as C60 buckyball molecules, DNA or even viruses.

Very little is known about most molecular species at low and ultra-cold tem-
peratures. Paramagnetic oxygen, particularly its isotope 17O2, for example, was
identified as a potential candidate for magnetic trapping, evaporative cooling
and ultimately BEC. Little data, however, exists about molecular collisional
interaction in this species due to the lack of experiments in the temperature
range and the technical difficulty of theoretically solving complex quantum me-
chanical many-body problems.

The collaboration with Prof. Achim Peter’s work group, which built a cryo-
genically cooled superconducting magnetic quadrupole trap for oxygen trapping
experiments, motivated the first half of the present work. Due to technical ad-
vances in computer power it became practical to attempt the ab initio compu-
tation of oxygen potential energy surfaces as a base for the calculation of more
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precise collision data. This data, in turn, was then to be used in the computer
simulation of trapped molecular oxygen.

In addition to making quantum chemistry computations practical for our
purposes on common x86-Linux workstation computers, recent technical ad-
vances also allow the computer simulation of the quantum degenerate BEC
superfluid on such affordable computers. The experimental observation of ma-
nipulations of BEC clouds is a long and tedious process and optical probing
and imaging usually cause the destruction of the sample. The quantum system
under investigation, however, can be described within a zero-temperature mean
field approximation in a rather simple and comprehensive way by the Gross-
Pitaevskii equation (GPE). Thus for the planning of experiments, the profiling
of parameter ranges and for detailed visual and quantitative predictions of ex-
perimental outcome, a simulation program represents a valuable resource.

This motivated the development of our BEC simulation program, which
has since been successfully applied to a wide range of different experimental
problems, including the investigation of topological excitations, such as vortices
and solitons.

1.6 This Work

1.6.1 Overview

In chapter 2 we give an outline of the theoretical background, upon which this
work is based. After presenting the basic classical and quantum mechanical col-
lision theory, we summarise, how scattering cross sections and rate constants
can be determined from potential energy surface data. We proceed with the the-
ory behind magnetic trapping and evaporative cooling of atoms and molecules,
describing the traps most commonly used in cold atom experiments. The simple
quadrupole trap, which can be turned into a Time Orbiting Potential (TOP)
trap by using additional fields, is subject of much of our numerical work on
evaporative cooling. The importance of this type of trap is due to the fact
that static quadrupole traps are simple enough by design to handle the high
superconducting coil currents and magnetic fields required in molecular oxy-
gen trapping experiments. We identify and explain processes leading to loss of
trapped particles and we describe the basic theory of evaporative cooling.

In chapter 3 we describe the work done in order to numerically calculate
a molecular potential energy surface for oxygen O2. We start with an out-
line of the methods of quantum chemistry. These methods are used to find
approximate solutions to the complicated many-body problems of electronic
structure by means of powerful computer program packages like “Gaussian”
and “Gamess”, the latter of which we have used for our purposes. The most
important approximation for electronic structure calculations is the Hartree-
Fock approximation of averaged mean electronic fields. This approximation
constitutes the origin of the concept of distinguishing individual electronic or-
bitals, which are consequently given universal labels like “1s”, “2p” and so on.
Starting from the Hartree-Fock solution, a large number of different methods
exists, which can be used to improve the numerical solutions. We take a brief
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look at the theory of such methods and describe the methods and procedures
we have employed in the course of the project. Before we present and dis-
cuss the results we have finally obtained, a detailed description of our quantum
chemistry problem and its solution using the Gamess program is presented.

Chapter 4 describes the numerical work on evaporative cooling. We start
with an outline of the numerical methods we have used. We present several im-
provements to existing algorithms and novel techniques applying Monte Carlo
methods to the problem of evaporatively cooling particles in a trap, with par-
ticular attention to linear potentials of quadrupole traps. We present results of
oxygen trapping and evaporative cooling simulations, investigating the feasibil-
ity of experimental realisations in the light of Majorana spin flip losses at low
temperatures and adverse magnetic field effects on the inelastic collision rate.

In chapter 5 we present numerical work done on simulations of Bose-Einstein
condensed matter waves at zero temperature. A universal simulation program
for the Gross-Pitaevskii equation has been developed and we present the numer-
ical algorithms before we describe the specific problems, which we have solved
using our simulation program.

1.6.2 Program codes

In the context of the present work I have developed several computer programs
for the simulation of the physical systems, which are subject of this dissertation.
Development of these programs constitutes a significant amount of work, and
care was taken to keep them as modular and extensible as possible to make a
future re-use of them or parts of them possible.

The bird simulation program (named after G. A. Bird, the author of the
DSMC algorithm, which is presented in section 4.1.3) simulates a general mi-
croscopic particle system in a trap. It can model many sorts of evaporative
cooling procedures and it can handle strong inhomogeneities and trap losses.
Program details and results are presented in chapter 4.

The GPEsim BEC simulation program, which I have also developed for
this work, is very universal and can be applied to all kinds of zero temperature
BEC problems in many different trap configurations in 1D, 2D or 3D. It can
also be applied to general numerical problems involving linear or nonlinear
Schrödinger equations and it is fast enough to handle extensive simulations on
discrete 3D grids on present workstation hardware. An additional visualisation
program written in OpenGL (see appendix A.2) makes the user independent of
expensive graphics software packages such as Matlab.

Several other little programs have been developed, notably a C++ class
for the direct output of simulation data in form of JPG images and a queuing
program to exploit a number of different Linux workstations for a large scale
computation (see chapter 3).

Since it is not possible to publish all of this code within this thesis, a CD-
ROM will be submitted to the library and archive files will appear for download
on the author’s university webpage. Distribution and use shall be governed by
the GNU General Public Licence (GPL) [18].
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1.6.3 Collaborations

Work on this dissertation was done in the context of collaborations with several
experimental groups, who inspired many aspects of this work and who benefited
from many of the results.

The work group of Prof. Achim Peters at the University of Konstanz built a
strong quadrupole magnetic trap using superconducting field coils suitable for
the trapping of molecular oxygen. Dennis Weise [19] was involved in the trap
design and work on oxygen spectroscopy. Oliver Vogelsang [20] worked on trap
design and the cryogenics. Computer simulations modelling this system will be
presented in chapter 4.

Work on the quantum chemical computation of oxygen potential energy
surfaces benefited from close consultations with Dr. Frank Neese (Max Planck
Institute for Radiation Chemistry, Mülheim, Germany). His expertise was in-
valuable in setting up the base function sets and other parameters for the quan-
tum chemistry computations.

Very early during my research time in Konstanz, Prof. Christopher J. Foot
and his work group from Clarendon Labs at Oxford university showed interest
in my emerging simulation program for Bose-Einstein condensates. Further-
more, the Oxford group also had some experience with evaporative cooling in
experiment and simulation. I was more than happy to follow an invitation to
work at the Clarendon Labs for two months during September and October of
2003.

During my work I also got involved in another collaboration with the group
of Prof. Markus Oberthaler, formerly based at the University of Konstanz, on
the subject of bright gap solitons in Bose-Einstein condensates. This inspired
the GPE simulations in cylindrical symmetry (Section 5.3.6). My Bose-Einstein
condensate simulation code and knowledge also contributed to work done by
Hilligsøe et. al. in [21, 22].

In late 2003 my supervisor Prof. Karl-Peter Marzlin moved to Calgary,
Canada, joining the quantum information theory work group of Barry Sanders.
Prof. Sanders was very kind to fund an extended stay with his work group in
Calgary in January and February 2004.

1.6.4 Publications

My research over the past years has yielded results in several areas. In the
following I will summarise the topics, on which a publication of research papers
is being considered or prepared.

Extensive research and programming work has gone into the simulation
methods for evaporative cooling. The algorithmic advancements now allow
consistent and robust simulation runs through many orders of magnitude of
trapped particle loss and temperature. At the same time, the program is ca-
pable of handling highly inhomogeneous situations such as the case of particles
trapped in a quadrupole trap with its high peak central density. In combina-
tion with more detailed data on evaporative cooling of molecular oxygen, we
are planning to prepare a research paper on this subject in the future.
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In the area of BEC simulations two publications are forthcoming. One pub-
lication in collaboration with the Oxford experimental physics group of Prof.
Foot is presently being prepared on the subject of BEC expansion dynamics
of strongly confined clouds in highly anisotropic traps. A second one, on ob-
servations and simulation of the central vortex tilting mode (section 5.7), has
already been submitted for publication [23].

On the subject of bright gap solitons in BEC, confined in periodic poten-
tials, my one-dimensional simulations have resulted in good qualitative results,
agreeing with experimental observations in reference [24]. Subsequent further
programming work has resulted in an extension of the simulation program ca-
pabilities to cylindrically symmetric geometries (section 5.10), which lead to a
more accurate quantitative numerical description of the experimental observa-
tions. We are planning to publish the results of the three-dimensional soliton
simulations.



Chapter 2

Background

2.1 Cold Collisions

In this section, we want to give a brief review of the physics involved in cold
atomic and molecular collisions. A profound understanding of the processes
involved in cold collisions is necessary in order to simulate evaporative cooling
and to optimise experimental realisations.

A cold collision is simply another expression for a “slow” collision, where
the particles involved have a low relative velocity [25]. This is the case at
low temperatures, reached by laser cooling and evaporative cooling. When
talking about “cold collisions”, one usually refers to a collisional energy range
between about 1 eV and 10−2 eV. In this range, the velocity of the atomic
nuclei is very slow compared with the velocities of the electrons in the va-
lence shell (which typically move at ≈ 106 m/s), yet the de Broglie wavelength
λ =

√

2π~2/(mkBT ) of the particles is still small compared with the size of the
interatomic interaction region. These conditions allow us to make a few simpli-
fying approximations as we will see further below, especially the semi-classical
approach (10−2 eV to 102 eV) to scattering effects for higher temperatures.
A “cold” collision process with a collision energy of 10−2 eV, corresponds to
a temperature (scaling the energy with the Boltzmann constant kB) of about
116 K.

The most important approximation is the binary collision approximation
(BCA). It is based on the fact that atomic densities achieved in magneto-optical
traps (MOT) are in the range of 1012 - 1015 m−3. While the collisions are rel-
atively long-ranged (using for example the 12-6-Lennard-Jones potential [26]),
they can still be regarded as binary events at these densities and the low temper-
atures achieved by laser cooling. Since the spontaneous decay time of possible
electronic excitations is much smaller than the mean collision time, all memory
of previous collisions, except for changes in kinetic energy, is effectively erased,
so that the BCA is justified.

The BCA is also justified by the way we look at scattering effects. The
large number of individual collisions taking place change a system of the kind
we are concerned with on a large scale. While the scatterer is represented by
a potential of finite range, the interesting effects of the scatterer will only be

11
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evaluated at a point far away from the scattering potential. Firstly, because it
is impossible to place detectors near the event itself, and secondly because we
are mainly interested in effects, which the scattering has on the ensemble as a
whole.

2.1.1 Classical scattering theory - Hard sphere model

The hard sphere classical scattering model is very simple. Particles are regarded
as spheres of diameters d1 and d2, and masses m1 and m2. On contact at
distance d12 = (d1 + d2)/2, they will undergo a scattering event by a delta-
peak force, conserving energy and momentum. At this point we shall not allow
inelastic collisions, although they can be incorporated into the hard sphere
scattering model.

The relative velocities between the two colliding particles are cr = c1 − c2

before the collision and c′r = c′1−c′2 after the collision, and the centre of mass
velocity is

cm =
m1c1 +m2c2

m1 +m2
=
m1c

′
1 +m2c

′
2

m1 +m2
. (2.1)

From these requirements the following relations for the velocities before and
after the collision arise. The velocities of the particles before the collision event
are

c1 = cm +
m2

m1 +m2
cr, c2 = cm −

m1

m1 +m2
cr. (2.2)

After the collision these velocities have become

c′1 = cm +
m2

m1 +m2
c′r, c′2 = cm −

m1

m1 +m2
c′r. (2.3)

The magnitude of the relative velocity remains unchanged. c′r = cr.

c’r

rc

b

A

Aθ

θA
χ

Figure 2.1: Collision geometry for the hard sphere scattering model. Collision
interaction by delta-force contact potential. Impact parameter b, incoming
(relative) velocity cr and post-collision relative velocity c′r, scattering angle χ.
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Figure 2.1 shows a 2D representation of the collision parameters. The differ-
ential collision cross section is σ dΩ = b db dε, with dΩ = sinχ dχ dε. Here, dε
is simply an angular differential perpendicular to the 2D collision plane shown
in the diagram (since we are considering the 3D case), and dΩ is a solid angle
differential. For σ we get

σ =
b

sinχ

∣

∣

∣

∣

db

dχ

∣

∣

∣

∣

. (2.4)

Due to the simple geometry in hard sphere scattering b = d12 sin θA = d12 cos(χ/2),
and thus

∣

∣

∣

∣

db

dχ

∣

∣

∣

∣

=
1

2
d12 sin(χ/2). (2.5)

Putting this in (2.4), the differential collision cross section is σ = d2
12/4 and the

total collision cross section becomes

σT =

∫

σdΩ = πd2
12 (2.6)

As one would expect, σ exhibits no dependence on the scattering angle χ, and
scattering is fully isotropic.

2.1.2 Inelastic collisions in the hard sphere model

A classical description of inelastic collisions needs to incorporate the effects of
internal degrees of freedom of the particles. Within the simple hard sphere
model discussed in the previous section, inelastic collisions can release or bind
energy in a collision process. The total collision energy Ec = Et + Ei, where
Et is the kinetic energy of the collision and Ei is the internal energy of the
particles. While Ec = E′

c before and after the collision event, the kinetic energy
after the collision depends on E ′

i:

E′
t = Ec − E′

i = Et + Ei − E′
i (2.7)

As explained earlier, the postcollisional kinetic energy is now distributed among
the collision partners depending on their masses. For the relative speed c′r
in the centre of mass frame, a random new direction can be chosen within
the approximations of the hard sphere model, because just as in the elastic
collision case, inelastic scattering is isotropic in this model. The magnitude of
the postcollision relative velocity is

c′r =

√

2E′
t

mr
, (2.8)

where the reduced mass mr = m1m2/(m1 +m2).

2.1.3 Limitations of classical scattering theory

Due to its simplicity the classical hard sphere scattering model is obviously inca-
pable of describing the fine details of atomic and molecular scattering phenom-
ena. Therefore, by itself it does not allow meaningful simulations of real physical
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systems. In trapped dilute gases at relatively high (kelvin to millikelvin) tem-
peratures however, a classical description in not entirely unfounded. This is
because the approximations, which can be reasonably applied to such a system
are the ones characterising a hard sphere scattering model:

Between relatively rare binary scattering events, the particle wave packets
travel on trajectories, which are almost completely classical, since there is no
significant overlap between particle wavefunctions. Long range effects of in-
terparticle potentials are largely negligible and, except for individual binary
collision events, particles travel through space freely. The whole evaporative
cooling process, taking place on the macroscopic level of the particle trap, ap-
pears to be well described by an almost entirely classical picture. Quantum
effects on the level of the binary interactions influence the macroscopic evapo-
rative cooling process only in terms of the collision rates, which are determined
by them.

There is no doubt, however, that quantum effects need to be taken into
account on the microscopic scale of the discrete scattering events, determining
the collisional cross sections and state transition probabilities. This is data,
which can be used in a numerical simulation by means of lookup tables and
interpolation, once it is available. The spatial trap symmetry of the particle
ensembles under observation also provides a point in support of a treatment in
terms of a hard sphere model. It allows anisotropic quantum scattering effects
averaged over all possible trap single particle trajectories to be approximated
by a more simple isotropic model on a macroscopic scale. Such a modified
hard sphere model needs to incorporate the said averaged macroscopic effect of
quantum scattering in terms of collision cross sections and transition rates for
possible elastic and inelastic scattering channels.

Well aware of the classical limitations on the microscopic scattering scale,
we find that a dilute gas ensemble in a trap at kelvin to millikelvin temperatures
undergoing evaporative cooling appears to be well described by a classical model
incorporating the fundamental quantum nature of scattering effects by means of
collision cross sections and transition probabilities. The classical approximation
reaches its validity limits once the cooling process reaches ultra-cold tempera-
tures on the nanokelvin scale, where the individual particle wave packets are
no longer well localised and distinguishable and Bose-Einstein statistics starts
to deviate significantly from the classical Boltzmann statistics approximation.
Also at these temperatures the binary collision approximation (BCA) breaks
down. Wave packet overlap causes the onset of quantum statistics effects and
the beginning of the Bose-Einstein condensation process for bosons.

In the following sections, we will outline the theory of quantum scattering
and the way it is used to calculate and understand scattering cross sections,
scattering channels and inelastic transition probabilities, ultimately for the more
complex cases of molecular scattering.

2.1.4 Basic concepts of quantum scattering theory

We can assume in a simple example, that the interaction potential V (r) depends
only on the distance between two particles. Thus the wavefunction describing
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the problem of scattering by a central force depends on r only. After the
scattering process, and at large r, we get

Ψ(k, r)→ Ψ′(k, r) +
f(k, θ)

r
eikr (2.9)

k = p/~ is the collision wavevector, depending on the collision kinetic energy

Ekin =
~

2k2

2m
. (2.10)

The incoming wavefunction Ψ(k, r) becomes a scattered wavefunction con-
sisting of two components. An unaffected component Ψ′(k, r) representing the
wavefunction of the system in absence of the scattering potential, and a radi-
ally outgoing scattered component with energy dependent angular scattering
amplitude distribution f(k, θ), where θ stands for the angle of observation with
respect to the incoming wave. For finite range local potentials V (r), which only
depend on position, an expression for the scattering amplitude can be found:

f(k, θ) = −2m

~2

∫

V (r)Ψ(k, r)
e−ikr

4π
drdθdφ. (2.11)

The net effect of the scattering collision can be described by a collision cross
section by integrating the scattered amplitude over all scattered directions [27].

σ(k) =

∫

φ
dφ

∫

θ
|f(k, θ)|2 sin(θ)dθ (2.12)

A rigorous quantum mechanical derivation of eq. (2.12) in terms of the Lippmann-
Schwinger equation can be found in [28]. In inelastic collisions, f(θ, φ) generally
also depends on the internal states of the colliding particles and the collision
energy. We will look at inelastic collisions later.

The main goal of scattering theory, as we are applying it to our problem of
low energy particle collisions, is to provide a means of obtaining the scattering
amplitude and the scattering cross section for any scattering event, given the
interatomic or intermolecular potential and the internal states of the participat-
ing particles. It should be noted, however, that scattering theory, in its original
application to high energy nuclear collisions, has traditionally been developed
and used for the inverse problem– the calculation of inter-particle potentials
after the experimental measurement of scattering data.

In the following we will look at how the scattering amplitudes f(k, θ), rep-
resenting the differential collision cross sections

dσ(k, θ)

dΩ
= |f(k, θ)|2 (2.13)

can be obtained.
Coming back to expression (2.9), one must start with a partial wave expan-

sion and analysis in order to calculate scattering amplitude and cross section.
For simplicity we define a potential

U(r) =
2mV (r)

~2
. (2.14)
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With this potential, the Schrödinger equation can now be written in a reduced
form as follows:

[

∇2 + k2 − U(r)
]

Ψ(r) = 0 (2.15)

In a central scattering potential, which is a good approximation for elastic
collisions, angular momentum is conserved and Ψ(r) can be expanded in terms
of spherical harmonics Yl,m(θ, φ), the angular momentum eigenstates. Since
scattering will also be independent of φ and m = 0, the spherical harmonics
become the Legendre polynomials Pl(cos θ). The wavefunction Ψ(r) can thus
now be expanded as follows:

Ψ(k, r) =
1

r

∞
∑

l=0

Alψl(r)Pl(cos θ). (2.16)

Coefficients Al follow from the condition that Ψ(r) must asymptotically sat-
isfy expression (2.9) as r → ∞. For simplicity, we define radial functions
ul(r) = Al(r)ψl(r). Using an effective l-dependent radial potential

Ul(r) = U(r) +
l(l + 1)

r2

and the purely radial functions ul(r), one gets a set of one dimensional radial
equations from the Schrödinger equation (2.15):

[

d2

dr2
+ k2 − Ul(r)

]

ul(r) = 0. (2.17)

For effective potentials Ul(r), which vanish rapidly as r →∞ (i.e. rUl(r)→
0, for r →∞), in the asymptotic limit (r →∞) the partial waves ul(r), which
make up the scattered wavefunction as described above, have an incoming part
proportional to eikr and an outgoing part proportional to e−ikr. Since the
particle number is conserved in elastic scattering, the incoming and the outgoing
particle flux must be equal. Due to conservation of angular momentum, this
condition applies to all partial waves ul(r) in the expansion individually.

In the asymptotic limit (r →∞), this can thus be written as1

ul(r) ∼
1

2i
[exp(ikr + iδl)− exp(−ikr − iδl)] = sin(kr + δl). (2.18)

The phase term δl is real-valued (due to equal amplitudes of incoming and
outgoing partial waves under conservation of angular momentum) and depends
on the effective potential function Ul(r) containing the scattering potential. The
scattering process can now be understood as follows: Elastic scattering affects
the relative phase of the partial waves and thus the scattering amplitude f(k, θ)
represents the interference pattern of all contributing partial waves.

1This condition is true for typical interatomic or intermolecular potentials such as the
Lennard-Jones potential, but it is not fulfilled, and needs to be modified as in [27], for the
case of scattering by, for example, a Coulomb potential U(r) = β/r.
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In total, the asymptotic solution of the full scattering problem differs from
the potential free solution with V (r)=0 (no scatterer) by a phase shift of 2ηl(k)
(factor of 2 by convention) of the outgoing partial waves only.

Ψ(k, r) ∼ 1

2ikr

∞
∑

l=0

(2l + 1)Pl(cos θ)
[

(−1)l+1 e−ikr + e2iηl(k)eikr
]

(2.19)

In the V (r)=0 no scattering case, the plane wave Ψ(k, r) is simply analysed as
incoming and outgoing spherical waves with a phase shift of 0 or π depending
on l parity by the above expression.

The phase shifts δl from equation (2.18), due to the full potential Ul(r),
can be separated into a part ηl due to the scattering potential U(r), and a
contribution δ̃l by the centrifugal correction term l(l + 1)/r2. Using spherical
Bessel functions to solve (2.17) substituting the correction term, it can be shown
that the resulting solutions Ψ̃l(r) have the asymptotic form

Ψ̃l(r) ∼ sin
(

kr − l π
2

)

. (2.20)

This means that δ̃l = −lπ/2, and the phase factor ηl, which is commonly used
in the literature and represents the phase shift due to the scattering potential
V (r) alone, becomes

ηl = δl − δ̃l = δl + l
π

2
. (2.21)

A plane wave incident on a scattering potential V (r) is a typical problem
of scattering calculations. The angular distribution of the scattered wave and
the scattering cross section need to be determined. Using the orthogonality of
the Legendre-functions

∫ 1

−1
Pl(x)Pl′(x)dx = [2/(2l + 1)] δll′ , (2.22)

(where δll′ is the Kronecker symbol and not a phase shift) and the large r
boundary conditions as described above, in a partial wave expansion (eq. 2.16)
of a plane wave Ψ(k, r) = eikx, we get a scattering amplitude of

f(k, θ) =
1

2ik

∞
∑

l=0

(2l + 1)(e2iηl(k) − 1)Pl(cos θ) (2.23)

and scattering cross section

σ(k) = 2π

∫ π

0
|f(k, θ)|2 sin θdθ =

4π

k2

∞
∑

l=0

(2l + 1) sin2 ηl(k). (2.24)

The resulting elastic collision cross section is dependent on the collision energy
and the scattering phase shifts, which depend on the interaction potential V (r)
and need to be determined by solving the radial equations (2.17) applying
equation (2.19).



18 CHAPTER 2. BACKGROUND

Identical Particles

For identical particles undergoing a collision, it is impossible to distinguish
between a scattering by angle θ and an angle π − θ. In order to take this into
account, the initial scattering wavefunction (2.9) needs to be symmetrised and
the differential scattering cross section under consideration in (2.12) becomes

dσ(k, θ)

dθdφ
= |f(θ) + f(π − θ)|2. (2.25)

Partial waves of uneven parity will no longer contribute to the scattering, while
partial waves of even parity count twice. This leads to a bosonic scattering
cross section of

σ(k) =
8π

k2

∑

l even

(2l + 1) sin2 ηl(k). (2.26)

For purely s-wave (l = 0) scattering, this yields the characteristic factor of 2
for bosonic scattering cross sections.

Scattering Matrices

In literature on scattering, the scattering matrix Sij is frequently used, describ-
ing the scattering amplitudes from channel i into channel j. We can define an
S-matrix element

Sij(k) = e2iηij(k), (2.27)

the modulus squared of which describes the transition probabilities between
eigenstates before and (long) after the collision process. For elastic collisions,
where the state does not change within the collision process, all but the diagonal
Sii elements vanish and the S-matrix equals the unity operation. Scattering
phases ηii(k) thus describe elastic collisions and are real-valued.

It is evident that inelastic collisions are much more complicated than elastic
collisions. Evaluation of elastic and inelastic collision rates requires knowledge
about all possible scattering channels (state transitions with finite probabilities)
and the respective transition rates. The scattering matrix Sij has as many rows
and columns as the number of incoming (pre-collision) and outgoing (post-
collision) channels in the scattering problem.

Low l scattering at low collision energies

Slow (or “cold”) collisions are unique in so far as only collisions with the very
lowest angular momentum l values in the centre of mass system contribute to
the collisional cross sections. This is because only low l collisions allow the
participating particles to approach each other close enough to experience the
interatomic (or intermolecular) interaction potential. High l collisions have a
classical turning point at large values of R because of the centrifugal potential
Vl(R) ∼ l(l+ 1)/r2, which increases with l and leads to a centrifugal barrier at
the energy

EB = V (rB) +
~

2l(l + 1)

2mrr2B
, (2.28)
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where rB is the radial distance of the barrier peak. This potential barrier EB

effectively shields the short-range scattering potential V (r) for collision energies
smaller than EB. This effect leads to the observation, that for very low tem-
peratures and collision energies the elastic collision cross section approaches a
constant value, which is the pure s-wave (l=0) component. This is, for exam-
ple, evident in the chromium data (figure 4.6) and in the oxygen collision cross
section data (figure 4.7).

For small collision energies k, the contribution of the l partial wave to the
scattering cross section σl(k) vanishes proportional to k4l, as shown in [28].
Thus for ultra-low temperatures, when the collision energy approaches E → 0,
we get

lim
k→0

f(k) = −a. (2.29)

a is the the so-called scattering length. The scattering cross section for identical
particles becomes σs = 8πa2 in the zero energy s-wave scattering limit. The
scattering length is of great importance in Bose-Einstein condensation (BEC)
of dilute gases, determining the interparticle interaction at BEC temperatures.
The scattering length a can also be negative for some atomic species such as
7Li [9]. This leads to an attractive interaction, and BECs are only stable in
this regime as long as a certain maximum number of trapped particles is not
exceeded, as this would lead to a collapse of the dilute gas cloud into the solid
phase. 7Li has hyperfine states with positive and negative scattering lengths at
ultra-cold temperatures.

In general, a large (preferably positive) scattering length a is desirable for
the realisation of BECs. Large |a| will allow rapid thermalisation and efficient
evaporative cooling with an elastic collision rate of γel = nσsv̄, as we will see
later (n is the particle density and v̄ the mean relative particle velocity). A
positive a will also ensure a repulsive cloud interaction, keeping the dilute gas
assumption na3 � 1 valid. For typical experimental BEC (87Rb) na3 has a
value of approximately 1e-4.

It is interesting to note that symmetry forbids s-wave scattering in fermionic
ultra-cold clouds. The consequence of this is that there is no scattering and the
cloud cannot be cooled using the common techniques of evaporation, as this
requires thermalising collisions.

Scattering resonances

The temperature dependent collision cross section σ(T ) of some atomic and
molecular species exhibits peaks, where the value increases significantly. This
effect arises from scattering resonances.

If the centrifugal barrier is very high, then it is theoretically possible to
trap particles inside between the barrier and the short range repulsive potential
V (r). For finite barrier heights, the trapping would only be meta-stable because
particles in trapped states would have a finite probability to escape tunneling
through the barrier. Such quasi-bound states cause scattering resonances when
their energy is slightly above zero, matching the kinetic energy of the incoming
wave. Whether such quasi-bound states exist for l > 0 partial waves depends
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on the short range potential V (r).

In a case where such a resonance occurs, the scattering phase shift ηe(k)
becomes π/2 (modulo π) for resonant k, and the partial wave contribution
to the total scattering cross section in equation (2.24) reaches its maximum
of 4π(2l + 1)/k2. Such a scattering resonance for the d-wave (l=2) in 87Rb
occurs at scattering energies between 2e-4 K and 3e-4 K, increasing the elastic
scattering cross section by a factor of four.

2.1.5 Theory of inelastic Collisions

Inelastic collisions encompass all collision processes, which do not conserve
translational kinetic energy. In a trapped gas there are usually exothermic exit
channels (see section 2.1.6 below) so that most inelastic collisions will lead to the
loss of trapped particles due to state transitions in the coupling of spin angular
momentum to translational angular momentum in the collision process. In ad-
dition to the states and channels associated with trap spin polarisation effects
and translational angular momentum, inelastic collisions also involve channels
with changes in the internal particle structure, such as rotational-vibrational
modes in molecules. We will look at a typical scattering example involving a
molecular internal rotational degree of freedom in the following section.

Quantum scattering by an anisotropic potential

In elastic collisions, total angular momentum as well as the components of trans-
lational (orbital) angular momentum l and any internal angular momentum j
of the particles are strictly conserved. There is no exchange between these two
components by definition, and the scattering potentials can be considered cen-
tral isotropic potentials V (r). Inelastic collisions couple these components and
allow angular momentum exchange between them. Inelastic scattering effects
cannot occur in central potentials, where l and j are individually constants of
the motion. Thus in the most general inelastic scattering case the scattering po-
tentials are not assumed to be isotropic or central. At ultra-low temperatures,
with vibrational modes frozen out, molecular scattering resembles scattering
between rigid rotators. The theory of these processes involves the treatment of
angular momentum coupling problems [29,27].

As an example, we will outline how scattering amplitudes between channels
can be determined for a simple case. We will take a look at a quantum scattering
event between an atom and a rigid molecular rotator, following along the lines
of the presentation of the problem in [27].

In the scattering event, the total angular momentum J and its projection
M are conserved. The quantisation axis chosen for this example is about the
incident direction and it is spatially fixed. The rotator is assumed to be rigid,
as would be the case for such a molecule at low temperatures in the absence of
vibrational excitations. Thus the rotator has a fixed moment of inertia I. The
molecular rotation has angular momentum j and eigenfunctions of the molecular
rotation are the spherical harmonics Yjmj (θ, φ), where mj is the projection of
the the rotational angular momentum to the chosen fixed quantisation axis.



2.1. COLD COLLISIONS 21

The equation describing molecular rotation is

HrotYjmj (θ, φ) =
~

2

2I
j(j + 1)Yjmj (θ, φ). (2.30)

The vector r connects the centre of the rigid rotator with the position of the
incident atom. r̂ = (θ, φ) describes its angular orientation. The nuclear sepa-
ration within the scattering rigid rotator molecule is described by the vector s,
the angular orientation of which is described by ŝ. The angle between r and s
is χ, so that the Hamiltonian for the combined system becomes

H =
~

2

2I
j(j + 1)− ~

2

2µ
∇2

r + V (r, χ), (2.31)

where µ = m1m2/(m1 + m2) is the reduced mass of molecule (m1) and atom
(m2), and V (r, χ) is the anisotropic scattering potential.

The scattering potential and the total system wavefunction ΦM
J (r, ŝ) need

to be expanded in terms of eigenstates of the total system angular momentum
J and its projection M , which is a result of the coupling of rotational angular
momentum j (projection mj) and orbital angular momentum l. Orbital angular
momentum arises through the relative motion between molecule and atom and
has the projection ml. These eigenstates of the coupled angular momenta are

YM
Jj′l′(r̂, ŝ) =

∑

mlmj

(j′l′mj′ml′ |j′l′JM) Yj′mj′
(̂s) Yl′ml′

(r̂), (2.32)

where the (j ′l′mj′ml′ |j′l′JM) are the angular momentum vector-coupling coef-
ficients, also known as the Clebsch-Gordon (CG) coefficients. The total system
wavefunction can be written as

ΦM
J (r, ŝ) =

1

r

∑

j′l′

ψJ
j′l′(r)YM

Jj′l′(r̂, ŝ). (2.33)

Here, the ψJ
j′l′(r) are radial functions, which must satisfy a set of coupled equa-

tions equivalent to (2.17) in the elastic scattering case:

[

d2

dr2
+ k2

j′ −
l′(l′ + 1)

r2

]

ψJ
j′l′(r) =

∑

j′′l′′

〈j′l′; J |U |j′′l′′; J〉ψJ
j′′l′′(r) (2.34)

With partial wave wavenumber kj ,

k2
j′ =

2m

~2

(

E − ~
2j′(j′ + 1)

2I

)

. (2.35)

U is the potential matrix, which is diagonal in J and independent of the pro-
jection M . The radial wave equations ψJ

jl(r) share this property and lack a
superscript M .

U is found by an expansion of the potential V (r, χ) in terms of Legendre
polynomials

V (r, χ) =
∑

n

Vn(r)Pn(cosχ), (2.36)
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so that

〈jl; J |U |j′l′; J〉 =
2m

~2

∫∫

d2r̂ d2ŝ [YM
Jjl]

∗ V (r, χ) YM
Jjl

=
2m

~2

∑

n

Vn(r)〈jl; J |Pn(cos θ)|j′l′; J〉 (2.37)

The relevant matrix elements can be calculated in terms of Wigner 3j-symbols
(

a b c
α β γ

)

and Racah coefficients W (abcd; ef) [30] as follows

〈jl; J |Pn(cos θ)|j′l′; J〉 (2.38)

= (−1)J+n
√

(2j+1)(2j ′+1)(2l+1)(2l′+1)

(

j j′ n
0 0 0

)(

l l′ n
0 0 0

)

W (jj′ll′;nJ)

Usually one is interested in the outcome of a scattering event with a specific
known entrance channel. We need to define a scattering matrix SJ picking
components (jl|S|j ′l′) as solutions of equations (2.34) in such a way that for a
total angular momentum J only one incoming term is non-vanishing. Such a
solution of (2.34) will be symbolised as ψJjl

j′l′ (r), with an additional superscript
jl indicating the single (j, l) entrance channel.

ψJjl
j′l′ (r) ∼r→∞

δjj′δll′ e
−ikjr −

√

kj

kj′
i−l−l′(jl|SJ |j′l′) eikj′r (2.39)

The partial waves corresponding to this radial solution need to be combined into
a full system wavefunction ΦM

J (r, ŝ) (equation 2.33) with an incoming term only
containing Yl0(r̂)Yjmj (̂s) since there can be no orbital angular momentum about
the incident direction of r̂.

Such a scattering event leads to the final result

Ψjmj (r, ŝ) ∼r→∞
e−ikjzYjmj (r̂) +

∑

j′m′′

f(jmj , j
′mj′ |θ, φ)

eikj′r

r
Yj′mj′

(r̂), (2.40)

where the scattering amplitude is calculated as

f(jmj , j
′mj′ |θ, φ)

=
∑

J

∑

ll′

∑

ml′

√

π(2l+1)

kjkj′
il−l′ (2.41)

×(jlmj0|jlJmj)(jl|T J |j′l′)(j′l′Jmj |j′l′mj′ml′)Yl′ml′
(θ, φ).

In the above expression we have used a matrix T J , which is defined by the
scattering matrix SJ as

T J(jl; j′l′) = δjj′δll′ − SJ(jl; j′l′). (2.42)

f(jmj , j
′mj′ |θ, φ) is the (anisotropic and thus θ, φ dependent) scattering prob-

ability amplitude from incoming channel (j,mj) to outbound channel (j ′,m′
j′).

The total scattering cross sections for these channels can be obtained by inte-
gration, analog to the elastic collision case presented in an earlier section.
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2.1.6 Inelastic collisions in trapped gases

Inelastic collisions cause one or both participating collision partners to change
its state. In a magnetically trapped gas these inelastic collisions usually lead
to the loss of one or both participating particles, since the post-collision states
are usually at a lower energy level and untrapped (for a diagram of the Zeeman
energy levels in molecular oxygen see figure 3.1).

Hamiltonian

Inelastic collisions are due to several coupling effects. There are at least three
major distinct physical processes involved, opening inelastic scattering “chan-
nels”. Two of these processes apply to collisions of ultracold atoms as well as
to collisions of ultracold molecules, one is unique to molecules [31].

• Spin exchange collisions

• Spin-spin magnetic dipolar interactions

• Spin-molecular rotation interactions (unique to molecules)

Furthermore, there are the following processes, whose influence on molecular
scattering must be considered:

• Molecular rotation-nuclear spin coupling

• Spin-molecular vibration coupling

• long-range anisotropies (relevant for polar molecules, [32, 33])

Spin exchange collisions are due to the angular momentum coupling effects
of collision partners at close proximity due to anisotropic interaction potentials.
The internal molecular angular momentum coupling situation between nuclear
spins, electronic spins and molecular rotation of the two collision partners in-
teracts when the particles approach each other.

One can think about it in a simplified picture as follows: The angular mo-
mentum projection of each participating particle at a specific imagined location
will split into a superposition of different multiplets with slightly different scat-
tering cross sections when they start interacting with the angular momentum
components of the second particle. After the reflection of the partial waves
at the scattering potential at a closer distance, the different multiplet partial
waves return and “recombine” with slightly different scattering phases (without
a change in system orbital angular momentum). Thus after the collision, when
the particles fly apart again, the individual angular momentum projections of
the molecules are slightly dephased and the molecules have a non-vanishing
probability to find themselves in a channel leading to trap loss. Spin exchange
collisions can be minimised by preparing the magnetically trapped particles in
their “stretched” spin states, with spin, nuclear spin and rotation aligned and
at a maximum with the laboratory fixed projection axis. Angular momentum
conservation then suppresses spin exchange collisions in this situation. How-
ever, spin exchange collisions also occur in the pure s-wave scattering regime at
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ultra-low temperatures and they are the leading cause for exothermic inelastic
collisions and trap loss in trapped atomic gases.

The separate dipolar magnetic spin-spin interaction Vdd has been studied
in [34] and can be written as

Vdd(r,Sa,Sb) = −
√

6 g2
eµ

2
Br

−3
∑

m

(−1)mC(2)(r̂)[Sa ⊗ Sb]
(2)
−m, (2.43)

where C(2)(r̂) is a Racah spherical harmonic, µB is the Bohr magneton, ge =
2.0023, and the tensor product of the spin vectors is generally defined with the
appropriate Clebsch-Gordan coefficients as (T symbolising a general tensor)

[T(la) ⊗ T(lb)](l)m =
∑

ma,mb

T (la)
ma

T (lb)
mb

(la,ma; lb,mb|l,m). (2.44)

Spin-spin interaction can typically be neglected in atomic and molecular trapped
gases since their effects are small [31].

The most important effect, unique to molecules, is due to molecular fine
structure interaction, the coupling between molecular spins S and molecular
rotation N . Spin-rotation interactions [35] arise from the coupling of the molec-
ular rotational motion about its centre of mass to the angular momentum of
the molecular spins. During the collision process, the molecular rotation is in-
fluenced by torques exerted by short- and long-range components Vs and Vlr of
the specific potential energy surface (PES) between the molecules, which can
be highly anisotropic. This coupling in combination with orbital angular mo-
mentum opens up the largest number of scattering (loss) channels for molecular
collisions.

The theory of hyperfine interactions in cold atomic and molecular colli-
sions is fairly complex due to the large number of individual angular momenta
involved. The most important hyperfine interaction is the coupling between
molecular rotation and nuclear spin because it can invert spins. However, this
can be neglected in most cases since the effect on particles prepared in their
stretched spin states is small [31]. In oxygen microwave spectra it has been
observed that not only are such interactions an order of magnitude smaller
than the finestructure interactions, but that they also require a considerable
energy in the order of many mK to cause hyperfine transitions [36]. At low and
ultra-low temperatures, such interactions can thus safely be considered to be
forbidden.

Similar considerations exclude spin-vibration coupling, since vibrations are
neglected at low temperatures within the molecular rigid rotator approximation.

Long range anisotropies in the molecular interaction potentials, arising from
dispersion and electronic quadrupole-quadrupole interactions, are only a pri-
mary concern for the electrostatic trapping of polar molecules.

Thus in the Hamiltonian for a molecular collision event between molecules
a and b

H = Ekin,a + Ekin,b + Vs + Vlr + Vdd +Hhfs, (2.45)

only the kinetic energies Ekin as well as the short- (Vs) and long-range (Vlr)
contributions to the potential are of greater importance for our purposes. Vs
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and Vlr are the components, which make up the anisotropic (angular dependent)
molecular potential energy surfaces. The expansion of the PES in terms of radial
and angular functions will be described in detail in chapter 3.

In the following we will describe how the complicated angular momentum
coupling problems encountered in molecular collisions create a large number of
possible inelastic collision channels.

Scattering channels

As we have discussed above, all of the coupling effects influence the scattering
Hamiltonian of the collision system, leading to a number of scattering channels.
This number depends on the system under investigation and can be quite large,
complicating calculations of scattering rates. We will look at an example.

Consider magnetically trapped oxygen 16O2 undergoing collisions with a
helium background gas (for simplicity). We will count the number of chan-
nels, which such a trapped molecule can inelastically scatter into. Initially, the
molecule is trapped in the “stretched” projection of J = N + S (combination
of molecular rotation and electronic spin). S=1 and the molecule can assume
odd integer rotational values N = (1, 3, 5, · · · ). Trapping appears to be possible
for this molecule with N=1 and J=2 (projections mJ=2 or mJ=1) (see figure
3.1). This system is treated as a rigid rotator, because vibrational excitations
in O2 have excitation energies in the order of 103 K, which are entirely frozen
out for the cold and ultra-cold temperatures we are interested in. The O2-He
system differs from the simplified rigid rotator model in section (2.1.5) in the
aspect that an additional molecular spin is coupled to molecular rotation and
orbital angular momentum. For S=0 we reproduce the model.

In the collision, total angular momentum J and the projection MJ are con-
served. Note that the total angular momentum J is a good quantum number
in the absence of an external magnetic field. For a scattering event we have
to account for angular momentum coupling between the oxygen spin S=1 and
the oxygen molecular rotation. Combination of rotational excitations N=1,3,5
(truncating at 5) and S=1 yields 7 possible values of J = N +S = (0, 1, · · · , 6),
with two independent realisations of J=2 and 4. Combining these with 5 pos-
sible orbital angular momenta L = 0, 2, 4, 6, 8 (truncating after the 8th partial
wave; partial waves are even valued due to the homonuclear molecular end over
end symmetry) to total angular momentum J , we get 45 different combinations,
of which 21 are different realisations for a conserved post-collision angular mo-
mentum J = 2. These realisations are different in S, N and/or L number.
This means that a molecule trapped with a specific total angular momentum
J has a large number of untrapped states a collision can scatter it into. For an
arbitrary total J (since the orbital angular momentum L may vary widely for
different collisions), there are a total number of 555 relevant channels, only few
of which leave the molecule in a trapped state. This number was determined
in [37] for rotational states up to N=5 and partial waves up to L=10, which
are generous limits for ultracold oxygen. Note, however, that these cutoffs are
arbitrary. Theoretically an unlimited amount of channels exists.

For two rigid rotator molecules the situation is an even more complicated
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angular momentum coupling problem [38, 30]. We now have two individual
molecules (index 1, 2), in which spin S combines with molecular rotation N to
J . J1 and J2 combine to J ′, which combines with L to J . J has a conserved
projection MJ . In [31] Avdeenkov and Bohn calculate the reduced matrix
elements analog to the simplified model in equation (2.38), applied to the rather
complex angular momentum coupling problem in O2 molecules. The molecular
interaction potential for these calculations was expressed in angular functions as
used by ourselves in chapter 3 and the molecular calculations for 17O2, which is a
promising candidate for evaporative cooling, encompass 836 scattering channels
for N=0,2 and L ranging from 0 to 10.

To appreciate these large numbers of channels for molecules, we can com-
pare them with the situation for pure s-wave scattering (no orbital angular
momentum) in the ultra-cold alkali 87Rb. Here, only 8 loss channels for inelas-
tic collisions, which are due to dipolar relaxation in the trap magnetic field,
exist [39].

From PES to scattering cross sections

For a given molecular potential energy surface (PES), such as the one resulting
from our quantum chemical ab initio calculations for O2-O2 in chapter 3, it is
possible to derive collision cross sections. This has been done for a PES other
than the one computed in the present work in [31] by Avdeenkov and Bohn.

The first step in the derivation consists of expressing the Hamiltonian in an
appropriate angular momentum basis for the O2 molecule, so that the wave-
function can be written in this basis as

ΦJ ,M(r, r̂, ŝ1, ŝ2, σ1, σ2) =
1

r

∑

L,J ,J1,J2,N1,N2,S1,S2

ψL,J ,J1,J2,N1,N2,S1,S2(r)

IL,J ,J1,J2,N1,N2,S1,S2(r̂, ŝ1, ŝ2, σ1, σ2). (2.46)

(See Appendix B.) The notation is analog to the basis expansion for scattering
by a rigid rotator (section 2.1.5) in equation (2.33). σ1,2 as spin coordinates
arise due to the fact that different expansions apply to singlet triplet and quintet
O2-O2 spin configurations. The coupled angular momentum functions I of the
two molecules are defined by tensor products of the single molecule angular
functions and angular functions of the orbital angular momentum L.

Solving the coupled channel equations analog to the ones in equation (2.34)
yields the scattering matrix S(J ). The number of rows and columns of the
scattering matrix is equal to the (large) number of channels considered, limited
only by an arbitrary cut-off in rotational numbers N and partial waves L.

Since we are considering magnetically trapped molecular oxygen, the state-
to-state cross sections need to be evaluated in the basis |N1N2J1J2,MJ1MJ2〉.
Note that in the zero magnetic field case the cross sections depend on total
angular momentum J and are independent of the projection M.

In this angular momentum basis and with the help of an appropriately ex-
panded potential energy surface, the scattering amplitudes can be derived along
the general lines of the rigid rotator example presented in section 2.1.5. The
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details of this O2-O2 case are much more intricate due to the more voluminous
angular momentum coupling calculations.

From the scattering amplitudes the scattering cross sections σ are obtained
by integration over all angular coordinates of the scattered wave. For channels
with indistinguishable final spin states, symmetry requires integration over half
of the angular space only to avoid double counting. One gets

σ(N1N2)J1MJ1
J2MJ2

LML→(N ′
1N ′

2)J ′
1M ′

J1
J ′
2M ′

J2
L′M ′

L
=

(1 + δJ1J2δN1N2δMJ1
MJ2

)

k2
N1N1J1J2

·
∑

LMLL′M ′
L

∣

∣〈(N1N2)J1MJ1J2MJ2LML|T |(N ′
1N

′
2)J

′
1M

′
J1
J ′

2M
′
J2
L′M ′

L〉
∣

∣

2
, (2.47)

where kN1N1J1J2 is the channel wavenumber and T is derived from the scat-
tering matrix S as in equation (2.42) T = I − S. Energy dependence of the
collision cross sections and transition rates comes about through the channel
wavenumber, which depends on the collision energy E as in equation (2.35)

kN1N1J1J2 =

√

2m

~2
(E − EN1J1 − EN2J2), (2.48)

where EN1J1 and EN2J2 are the fine structure energy levels of the two molecules
involved.

Note that general collision cross sections for diatomic nonvibrating molecules
have also been derived in [40] and [41] using a classical kinetic theory approach,
starting from a linearised form of the classical Boltzmann equation collision
integral.

Transition rates

In many situations it is preferable to use collision- and transition rates instead of
collisions cross sections. A rate defines how many collisions or transitions occur
in a specific volume during a specific amount of time. The energy dependent
transition rate for a collision process between two particles a and b in initial
states |a〉 and |b〉 and final states |a′〉 and |b′〉 is defined as the expectation value
of σ(E)v.

K|a,b〉→|a′,b′〉(E) = 〈σ|a,b〉→|a′,b′〉(E)v〉, (2.49)

where E is the collision energy depending on the relative particle velocity v.
Averaging over many such processes, the (relative) particle velocity depends on
the ensemble temperature T .

Therefore, for our simulation purposes we will average the energy depen-
dent rate coefficient by integrating it over the temperature dependent velocity
distribution of the trapped particles. Details about this will be presented in
section 4.3.3.

2.1.7 Other quantum scattering effects

Beside the typical two-body elastic and inelastic collision processes described in
the previous sections, several other quantum scattering effects occur in cold and
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ultra-cold gas clouds. Some of these effects, such as the three-body collisions
and radiative heating are inelastic in character and thus largely undesirable,
leading to increased trap loss rates. Others, such as scattering resonances have
great experimental potential and can be exploited to an advantage.

In the following, we will look at a few processes, which are subject of present
research. However, most of these processes are not of immediate importance to
the subjects of the present work.

Inelastic three-body collisions

Trapped cold or ultra-cold atomic and molecular gases exist in a regime of
extremely low density. This can be expressed as na3 � 1, where n is the
particle number density and a is the scattering length. In this regime, binary
interaction is dominant and hardly any three-body collisions will occur. So
few, in fact, that three-body collisions can safely be neglected. However, it is
now possible to fine-tune particle interaction using Feshbach resonances (see
further below), allowing realisations of arbitrarily large scattering lengths, so
that three-body effects can be studied in more detail.

Particle loss from a trapped cloud due to inelastic two-body and inelastic
three-body collisions can be expressed in terms of the two-body loss rate K2

and three-body loss rate K3 as

∂n

∂t
= −K2n

2 −K3n
3, (2.50)

With increasing density n the three-body loss rate will become significant and
rapidly bypass the two-body loss rate. Note that three-body collisions are
mostly inelastic leading to trap loss, as these collisions are the only way the
undercooled gas can reach the solid phase mandated thermodynamically by
the low ensemble temperature. In the recombination process, two particles
aggregate in the presence of a third particle, transferring a large amount of
(kinetic) energy to the third. Thus most often all three participating particles
are lost from the trap– the aggregated two since they end up in an untrapped
state and the third due to its large kinetic energy, which is orders of magnitude
larger than that of the remaining ensemble particles.

In 133Cs, where three-body effects cannot be neglected, Weber et. al. [42]
found a K3 ∼ a4 dependence of the three-body loss rate coefficient on the elastic
scattering length a, which can be controlled precisely by magnetic tuning of a
Feshbach resonance.

Feshbach resonances

Exploiting the energetic coupling of different elastic and inelastic scattering
channels, the collisional cross section of atoms in specific spin states with specific
collision energies can in some cases be tuned on a wide parameter range using
an offset magnetic field in an effect known as Feshbach resonance [43].

As we have already shown in section (2.1.4), quasi-bound states can have a
tremendous effect on the scattering properties. One must distinguish between
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different types of resonances. Simple scattering resonances, as discussed earlier,
are called shape resonances. They can arise due to a potential barrier and the
bound wavefunction belongs to the same system internal state as the continuum
wavefunction. No internal state transitions are required.

Feshbach resonances arise when an incoming channel is resonantly coupled
to a different channel in such a way that the wavefunction for the incoming
continuum state and the wavefunction for the quasi-bound state belong to a
different internal state of the particle. For a Feshbach resonance, the bound
state is semi-stable and cannot decay into any channel other than the incoming
channel.

In magnetically trapped alkali gases and BEC, the continuum and bound
internal states relevant for the Feshbach resonance effects are states of the trap
magnetic field. In some cases their Zeeman energy changes at a different rate
for a change in magnetic field magnitude B. Thus, using a simple homogeneous
offset magnetic field, the Feshbach scattering resonance can be tuned, allowing
a precise adjustment of the particle s-wave scattering length in the BEC over
an extremely wide range.

Scattering in molecular gases is more strongly influenced by such scattering
resonances than is the case in atomic samples, due to the large number of
coupled channels and internal rotational molecular states. Feshbach resonances
involving changes in one or both molecules’ rotational quantum numbers can
be very long-lived and lead to resonance lines, which are broad in temperature
and thus relevant over a wide range of collision energies.

Optical Shielding of cold collisions

It is possible to effectively shield collisions of particles in specific states by means
of a laser field. The laser is tuned to resonance with a transition of the entrance
channel to a state with a repulsive interaction [44, 45]. Particles approaching
each other, attracted by the long range part of the inter-particle potential, are
coupled into an upper state by a laser beam resonant with the transition at
a specific particle separation Rc. This separation Rc marks the Condon-point
for the transition, where the potential difference matches hν, where ν is the
laser frequency. Further approach is quickly halted and reversed by the particle
repulsion in the upper state. Outbound, the particles couple back into the
initial state when they reach the resonance distance Rc again. Upper state life
times are important for this effect. Rapid decay times make it less efficient.

Partial upper state survival causes the optical shielding process to have a
slightly inelastic character. Outbound particles remaining in the upper state
will transform the optical excitation energy into kinetic energy heating the
trapped particle ensemble. This can be considered to be a radiative heating
process.

Radiative Heating

All cold atom and molecule experiments require the use of optical traps at
least during some of their stages. In low temperature collisions, the collision
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time scales, that is the time the collision partners spend at ranges of separation,
where they experience the interaction potential, is roughly comparable with the
time scales of electronic excitation and relaxation. Thus a certain amount of
“interferences” between the two processes can be expected, even in non-resonant
conditions. This has been shown experimentally and studied computationally
in [46,47].

The optical trapping laser field drives transitions of a fraction of the colliding
particles into an excited quasi-molecular state during the collision process. A
fraction of these atoms, just as in the optical shielding resonant coupling case,
will not be coupled back and will spontaneously decay back into the ground state
at a later time, likely after “rolling down” the excited state potential [46]. Thus
these particle transfer optical excitation energy into kinetic energy, dispersing
it in subsequent collisions and thus heating the trapped ensemble. This effect
is called “radiative heating” and puts a lower limit on the temperatures that
can be reached in optical cooling processes. Radiative heating effects are most
significant at temperatures below the Doppler laser cooling limit TD.

Photoassociation

Optical transitions can also be used to transfer atoms into molecules while they
are undergoing a collision process. In such a case, at a specific interparticle
separation Rc both participating atoms absorb a laser photon and couple to
an excited molecular state. This effect has been used experimentally in [48] to
measure detuning dependent transition rate modulations in the sodium ground
state, so-called Condon modulations, which allow precise derivation of s-wave
scattering lengths [49].

2.1.8 Semi-classical approach to quantum scattering theory

As we have outlined in the previous section, the microscopic description of
quantum scattering effects is very complicated. Particularly for molecules with
a rich internal angular momentum coupling structure, a number of different pro-
cesses in scattering events open up an even larger number of scattering channels.
Each of them has its own specific transition probability for a given initial state.
An analytical treatment needs to make approximations, truncating, for exam-
ple, the number of partial waves contributing to a given scattering event. The
complexity encountered in this type of problem mandates the use of computer
algebra systems to obtain transition rates and collision cross sections from PES
data [31].

Despite the microscopic complexity of such molecular systems, a trapped
cloud of oxygen molecules or, in a simpler case, alkali atoms, appears to be
remarkably simple. Scattering is isotropic in all situations, and all macroscopic
effects like temperature, density, cooling rate, trap lifetime and others are de-
termined by only two essential parameters: Elastic collision rate and inelastic
collision rate (which is almost synonymous with the trap loss rate).

It appears prudent to base a numerical simulation of evaporative cooling
on this important observation. All quantum effects will be contained in the
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said two scattering parameters, while the rest of the physics involved can be
treated classically. This general approach, together with many other algorith-
mic solutions, makes numerical simulations of the molecular trapping problem
feasible.

2.2 Trapping of neutral atoms

Magnetic traps exploit the effect that paramagnetic particles experience spin-
polarisation in an external magnetic field. Particles whose spin is oriented par-
allel or anti-parallel with an external magnetic field, experience a force towards
or away from a magnetic field minimum. For static magnetic fields Maxwell’s
equations do not allow field extremes in free space. Allowed, however, are zero
crossings and thus free space minima of the magnetic field magnitude. Because
of this, only weak field seeking particle states, i.e. particle states attracted to
low field magnitudes, are trappable magnetically. The spin alignment with the
trap magnetic field will follow the field orientation adiabatically when the parti-
cles move around within the trap. The interaction energy between particle spin
and trap magnetic field, V = −µBS ·B, is proportional to the field magnitude
|B|.

The particle magnetic moment ~µ remains parallel or antiparallel with B
while the adiabaticity condition is observed. The adiabaticity approximation
requires that the rate of change of the magnetic field direction for each in-
dividual particle within the trap needs to be much smaller than the Larmor
frequency ωl.

ωl = glmFµB
|B|
~

(2.51)

2.2.1 Quadrupole magnetic trap

The most simple trap design is the magnetic quadrupole trap. In a quadru-
pole trap two magnetic field coils are used, the axes of which are aligned (axial
Helmholtz configuration). Both coils conduct electric current in opposite di-
rections so that in the centre of the trap between the two coils the magnetic
field has a zero crossing and thus a vanishing local magnitude. From this point
at the centre of the trap, the magnetic field magnitude increases linearly in all
spatial directions.

B = Bxx̂ +Byŷ +Bz ẑ = (B′
qx)x̂ + (B′

qy)ŷ + (2B′
qz)ẑ (2.52)

where B′
q, the gradient of the magnetic field in radial or (x,y) directions, is

constant, and x, y and z are displacements from the origin at the trap centre.

Thus the force F = −∇V = µB, which the trapped particles experience
towards the trap centre, is also constant for all radial directions.

One serious problem with the simple quadrupole magnetic trap is the viola-
tion of the adiabaticity condition at its centre. The effects of this adiabaticity
violation will be discussed in section 2.3.2 below.



32 CHAPTER 2. BACKGROUND

0.5

1

1.5

2

2.5

3

3.5

4

−40 −20 0 20 40

−100

−50

0

50

100

r [mm]

z 
[m

m
]

|B| on a cut through the magnet

Figure 2.2: Magnetic field magnitude |B| in a superconducting magnetic quad-
rupole trap. Colour scale in units of Tesla [T]. The field magnitude vanishes in
the centre and increases linearly in all directions within the trap centre region.
The axial gradient is twice the radial gradient. Design and construction by
Dennis Weise and Olaf Vogelsang [19,20]. Figure used with permission.

2.2.2 TOP trap

A dynamic modification of the quadrupole trap is, for example, the time orbit-
ing potential (TOP) trap [50]. The design of this trap avoids particle trajecto-
ries within the trap crossing through the zero field magnitude point. Because
spin aligned particles cannot follow the field direction adiabatically close to this
point, an additional particle loss caused by so-called Majorana spin flips into
untrapped states cannot be avoided in a simple quadrupole trap. A TOP trap
is built using two pairs of additional Helmholtz coils, positioned radially around
the axial quadrupole coils, perpendicular to each other. The bias field gener-
ated by these radial coils allows shifting the quadrupole magnetic zero field
magnitude point out of the trap centre. Appropriate control of the two pairs
of coils allows moving this problematic point around, circling the trap centre
in the z = 0 plane, by superposing the following additional magnetic field with
the static quadrupole field (2.52).

Btop = Bbias [cos(ωtopt)x̂ + sin(ωtopt)ŷ] (2.53)
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In the trap centre region this will create a time-averaged harmonic magnetic
trapping potential V̄ , in the centre of which the magnetic field magnitude does
not vanish.

V̄ = µBaverage ≈ µBbias + µ
B

′2
q

Bbias

1

4
(r̄2 + 8z̄2). (2.54)

The TOP bias field rotation angular velocity ωtop is chosen to be less than the
Larmor frequency ωl and faster than the trap oscillation frequency ωtrap of the
resulting harmonic trap.

ωl � ωtop � ωtrap (2.55)

This allows stable tapping of particle populations over longer periods of time
than those possible using a simple quadrupole trap.

TOP traps are useful for evaporatively cooling after loading with a laser
cooled gas cloud. In what can be called 2-dimensional evaporation because the
zero field point is moving in a plane, this zero magnetic field point can be used
to “carve” a circle of radius r0 = Bbias/B

′
q into the trapped particle cloud. The

adiabaticity violation at this point causes spin flips into the untrapped state,
primarily of hot atoms in the outer cloud regions. The remaining particles
subsequently rethermalise at a lower temperature by means of elastic collisions.
TOP traps are necessarily quite shallow because radial offset coil current control
does not allow for very strong currents and fields. This rules out TOP traps
for magnetic trapping of oxygen, which requires very strong magnetic field
gradients due to its small magnetic moment of 2µB.

2.2.3 Gravity effects

Gravity along the z (axial) axis changes the potential gradients in a linear trap.
The force above the magnetic field minimum point increases. Below the zero
field point the potential gradient is smaller, decreasing the force on a trapped
particle towards the trap centre. Defining a parameter γ = mg/(2µB ′

q), where
g is the gravitational acceleration and 2µB ′

q is the axial force on a particle due
to the magnetic field gradient, it is clear that particles can only be trapped
while γ < 1. The effect of gravity on a harmonic trap is more intuitive, as it
only shifts the equilibrium position.

In practice, gravity modifies the TOP trap frequencies as follows [51].

ω⊥ = ω⊥,0(1− γ2)1/4(1 + γ2)1/2, ωz = ωz,0(1− γ2)3/4 (2.56)

Thus the trap frequency ratio λ changes as

λ =
ωz

ω⊥
=
√

8

√

1− γ2

1 + γ2
, (2.57)

so that in addition to the typical oblate clouds (“pancake shape”) in a TOP
trap, even trap conditions for spherical and prolate clouds (“cigar shape”) can
be realised. Prolate shape, however, can only be realised for very weak trapping
fields as γ → 1.
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For evaporative cooling using radio-frequency (RF) Zeeman transition evap-
oration, the instantaneous magnetic field is important. Thus a shifted popula-
tion will be at resonance with an RF field at different spatial positions. The
anisotropy caused by an axial gravity field will cause the evaporation surface
to change from a spherical region to a plane intersecting with the cloud [52].
Thus RF evaporation is reduced in efficiency as it effectively becomes one-
dimensional.

2.2.4 External magnetic field effects

Inelastic atomic [53] and molecular scattering effects are changed significantly
in external magnetic fields due to shifts in energy levels of the scattering exit
channels relative to the entrance channel. Volpi and Bohn [54] investigated this
effect for 17O2, which is the most promising candidate for magnetic trapping
of molecular oxygen. Apart from intermolecular inelastic collisions, they also
investigate 17O2-

3He inelastic collisions, which are relevant for buffer gas cooling
at low temperatures using common dilution refrigerators for the purpose.

In addition to the components of the collision Hamiltonian in equation
(2.45), an external magnetic field contributes a spin coupling term

HB = gµB S ·B, (2.58)

where B is the external trap magnetic field, g is the electronic Lande factor and
µB is the Bohr magneton. In a Hund’s case b coupling [55] basis set, molec-
ular rotation is not strictly a good quantum number, due to the fact that the
hyperfine and the external field interactions couple different rotational states.
Total MJ , however, is conserved and due to the weak coupling effect, we can
still use the |N J MJ〉 = |0 1 1〉 notation for the trapped 17O2 state. Volpi and
Bohn derive a simple universal fitting formula, based on the complex underlying
coupling phenomena, which can also be adapted to inelastic collisions of other
molecular species. The fitting formula approximates the inelastic transition
rates KNJMJ→N ′J ′M ′

J
, or simply the overall inelastic (loss) rate Kloss.

KNJMJ→N ′J ′M ′
J

= K0

(

E + ∆MJgµBB

E0

)

(2.59)

K0 is the scaling constant, which can be derived from the |B|=0 magnetic
field case. E is the collision energy, which increases by ∆EB=∆MJgµBB due
to the linear Zeeman effect. Note that this simple approximation neglects the
quadratic Zeeman shift. E0 is the height of the centrifugal d-wave barrier in the
exit channel and ∆MJ = MJ −M ′

J is the difference in the angular momentum
projection in the channels involved. ∆MJ assumes values of 1 or 2 for the 17O2

case, where the final states in the exit channels are |0 1 0〉 and |0 1 −1〉.
It is important to note that the ∆EB term significantly changes the scat-

tering rate at low collision energies, as it may exceed E by far.
The above approximation is valid for small collision energies and relatively

small magnetic fields. The Zeeman energy splitting between initial and final
states needs to be smaller than the height of the d-wave centrifugal barrier.
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For the 17O2-
3He case, the barrier height is E0=0.59 K and 13 mK for 17O2-

17O2. This makes the approximation valid for fields up to 2430 G (∆MJ=1)
and 4860 G (∆MJ=2) in the 17O-3He case. For intermolecular inelastic O2

collisions, the validity limit is reached at merely 53 G. Making matters worse,
Volpi and Bohn note that for fields exceeding these thresholds, the inelastic
transition rates very rapidly reach and exceed the elastic collision rate.

The strong magnetic field dependence of the inelastic transition rates are a
big disadvantage in attempts to trap oxygen molecules in magnetic traps. Volpi
and Bohn’s calculations cast a shadow on buffer gas and evaporative cooling
experiments. However, buffer gas cooling may still provide a large enough
number of trapped cold molecules to allow evaporative cooling runs with a
rapid decrease of the trap depth (and thus |B|) to quickly leave the parameter
region of high inelastic scattering rates.

2.2.5 Buffer gas cooling

One very important part in the magnetic trapping of any particle species is the
initial “filling” of the trap. Since magnetic traps are relatively shallow, with
depths in the order of Kelvins at the maximum, the particles-to-be-trapped (the
sample) must be precooled to temperatures significantly below the trap depth
in order to collect a substantial sample population in the conservative trapping
field. For atomic gases, such as for the alkalis, the precooling can be done using
photon scattering in Zeeman slowers and with laser cooling in magneto-optical
traps (MOTs). This procedure, however, is largely limited to a small number
of atomic species, which have the simple optical transition schemes required for
these processes [2]. In general other particle species, and particularly molecules
with their complex internal ro-vibronic energy levels, cannot be cooled using
such simple optical schemes.

While optical methods simplify the trap loading procedures significantly,
for many atomic species traditional cryogenic methods are necessary to reach
the low temperatures required for trap loading. For this purpose the buffer
gas cooling (BGC) method [56] has proven to be very successful. It relies on
the thermalisation of an evaporated atomic or molecular sample with an (un-
trapped) helium buffer gas by means of elastic collisions. The buffer gas is
cryogenically cooled to mK temperatures and can thus dissipate the transla-
tional energy of the sample. The buffer gas can eventually be removed from
the trap region relatively quickly using vacuum pumps and a further reduction
of the cryostat temperature.

At sub-Kelvin temperatures all atomic and molecular species have a negli-
gibly small vapour pressure, with the exception of helium. This makes helium
an ideal buffer gas. Additionally, the 3He/4He isotope system allows dilution
refrigeration [57] to reach temperatures on the mK scale. The species-to-be-
cooled, however, needs to be brought into the gaseous phase, which is often
done by laser ablation of a solid or liquid sample. The initially hot evaporated
sample thermalises with the buffer gas by elastic collisions and forms a super-
cooled gas cloud in the magnetic trap, which is only meta-stable in its gaseous
form because of the very low particle densities. Extreme dilution effectively
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rules out three-body recombination into the liquid or solid phases.

Collisions of the sample gas particles with the walls of the cooled vacuum
system will cause them to stick there, removing them from the system. Thus
the buffer gas pressure needs to be high enough for the sample to thermalise
to close within the buffer gas temperature before impinging on the trap walls.
This puts a lower limit on the buffer gas temperature, as a certain minimum
buffer gas pressure is required for this.

In [56], a simple model is introduced, which allows calculation of the number
of collisions required for a sample particle species with mass M at a (high)
temperature T ′ to thermalise with the buffer gas of massm at (low) temperature
T . The temperature change of the sample in one collision is ∆T = (T ′ − T )/κ,
where κ = (M +m)2/(2Mm). For l collisions, we get the differential equation

∂Tl

∂l
= −Tl − T

κ
, (2.60)

where Tl is the sample temperature after undergoing l collisions with the buffer
gas. The solution of this differential equation is

l = κ
[

ln(T ′ − T )− ln(Tl − T )
]

. (2.61)

Assuming an ablated sample temperature of≈ 1000 K and a sample to buffer
gas mass ratio of M/m ≈ 50, approximately 100 elastic collisions are required to
cool the sample to within 30% of the buffer gas temperature. With an assumed
elastic collision cross section between sample and buffer gas of 10−14 cm2, the
3He buffer gas needs a density of at least 10−16 cm−3 and thus the temperature
cannot be chosen much lower than 240 mK, according to its T dependent vapour
pressure curve. Sample species, which can be fed into the trap at significantly
lower temperatures can thermalise at temperatures below this, but the helium
vapour pressure curve rules out loading temperatures significantly below a figure
of 100-200 mK.

2.3 Trap loss processes

In the previous sections (2.1.6ff and 2.1.7ff), we have discussed inelastic collision
effects. In a trapped gas, inelastic collisions will invariably lead to loss of one or
both particles from the trap, since they will end up in untrapped or antitrapped
states. Inelastic collisions are most frequent at high particle densities close to
the trap centre. Thus particles with below-average energies are removed, leaving
behind a heated remaining ensemble. Furthermore, inelastic collisions usually
have exothermic exit channels and some of the Zeeman energy of the particle
in the magnetic trap will be turned into particle motion. In the antitrapped
case, the particles are further accelerated out of the trap. While leaving the
trap, such particles may undergo further elastic or inelastic collisions, dispersing
some of their energy into the remaining cloud of trapped particles. Thus it can
be said that all inelastic collision processes are associated with trap heating and
adverse to evaporative cooling efforts.
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In equation (2.50) we have expressed two-body and three-body loss with
differential equations in terms of the particle density. For two-body loss we get
ṅ = −K2n

2 and for three-body loss ṅ = −K3n
3. In the following we will look

at two other important loss mechanisms.

2.3.1 Background gas collisions

In experimental realisations of magnetic traps, the quality of the vacuum and
the temperature of the trap walls will put an ultimate limit on the lifetimes of
trapped particles. Macroscopic trap walls can be cooled to cryogenic temper-
atures of around 20mK at best using expensive 3He dilution refrigeration [57].
Unavoidable background particles will have substantially higher energies than
the trapped particles, especially in experiments without cryogenic cooling of the
trap, such as in most BEC experiments. Background gas collisions therefore
will always lead to substantial energy transfer and particle loss. This results in
an exponential trap decay (aside from all other trap loss processes), described
by a characteristic trap lifetime τ :

ṅ = −n/τ (2.62)

2.3.2 Majorana spin flips

As noted above, the quadrupole trap in particular violates the adiabaticity
condition for stable magnetic trapping in a region around the trap origin, where
the magnetic field magnitude vanishes [50, 58, 59]. In this region, the rate of
change of the magnetic field direction experienced by a particle crossing through
can be larger than the particle’s Larmor frequency ωl = µ|B|/~, where µ is the
particle’s magnetic moment µ = gFmFµB, depending on the Bohr magneton
µB and the particle’s spin projection.

The maximum rate of change of the magnetic field direction can be char-
acterised by the particle’s closest approach b to the trap centre on its orbit
through the trap and its velocity v. The maximum angular velocity around the
trap centre, and thus the maximum rate of change of the trap magnetic field
direction, is the expressed by the ratio v/b. With this it is possible to calculate
that the predominant loss area due to this effect is an ellipsoid (due to different
radial and axial trap magnetic field gradients in a quadrupole trap) with the
radius

b0 =

√

v~

µB′
q

(2.63)

The trap loss due to this effect is proportional to the particle flux through the
surface area (∼ b20), the mean particle density and the particle velocity. The loss
increases as the trap ensemble is evaporatively cooled, gets denser and spends
more time close to the trap centre. In some cases it eventually becomes so large
that evaporative cooling is no longer sustainable.

In a simple quadrupole trap, gravity (see section 2.2.3) does not alleviate
this problem.– Particles will experience an offset in their time averaged position,
but they will still cross through the zero field region. Gravity is counteracted
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by a certain minimum magnetic field gradient. Particles will simply fall out of
the trap if this minimum is not exceeded by the trapping field. Thus, as long as
particles are trapped in a quadrupole trap under the influence of gravity, they
will still have to cross through the zero magnetic field region suffering Majorana
loss. We can imagine the effect of gravity as simply “tilting the cone” of a linear
potential. In a time averaged harmonic potential (TOP trap), gravity offsets
(downshifts) the equilibrium position of trapped particles. Majorana loss is
effectively prevented in the TOP trap case by keeping the cloud away from the
zero field point at all times. Conversely, the Majorana spin flip effect can be
exploited in TOP traps to selectively evaporate particles from the cloud border
by “cutting” into the cloud with the zero magnetic field orbit (see section 2.2.2).
Here the effect is much enhanced in comparison to the static quadrupole case
by the rapid motion of the magnetic field zero point.

2.4 Evaporative Cooling

The scattering length a as introduced in the previous sections is crucial for
evaporative cooling of bosonic gases, as it determines the rate of elastic collisions
within the cold gas. Since evaporative cooling requires high elastic collision rates
γel = nσsv̄, large values of the elastic scattering cross section are of advantage.

The situation is entirely different for fermions. Because of symmetry con-
siderations, fermions cannot undergo s-wave scattering. Thus, in ultracold en-
sembles of fermions, there will be no elastic collisions, ruling out a traditional
evaporative cooling process to reach quantum degeneracy of a Fermi gas.

In the following sections we will outline the theoretical aspects of evaporative
cooling of bosonic gases. While our simulations will start at mK temperatures
and take samples down to temperatures close to quantum degeneracy, we will
not consider the effects of evaporative cooling in relation to condensate growth.
Readers interested in this topic are referred to [60].

2.4.1 Basic principles of evaporative cooling

In order to explain the method of evaporative cooling, people often compare
it with the cooling process of a hot cup of coffee. While the hot steam, which
consists of particles of above-average energy, is removed from the system, a col-
lection of colder particles remains in the cup. The remaining particles rether-
malise and reproduce the hot tail of the Boltzmann distribution, which has been
removed in the evaporation process. This leads to a Boltzmann distribution of
a lower temperature. This highlights the importance of elastic collisions, which
provide a constant re-supply of particles of above-average velocity, as required
for efficient cooling.

The evaporative cooling of an atomic or a molecular cloud of trapped parti-
cles can be done much more efficiently and faster than in the example of a hot
cup of coffee, because it is possible to evaporate particles, and thus remove them
from the remaining ensemble, at almost arbitrary cut-off energies. In contrast,
in a hot cup of coffee the evaporation threshold is sharply defined by the surface
energy of the liquid. Only particles with larger kinetic energy will undergo the
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phase transition and be removed, unless there is not enough convection in the
gas phase. (Removing the steam/vapor improves the cooling efficiency of this
process by increasing the temperature and vapor gradients.)

In order to minimise particle loss over the complete evaporation process, the
ensemble has to be kept as close to a thermal equilibrium Maxwell-Boltzmann
distribution as possible. The cloud needs to be allowed to rethermalise and
thereby regenerate the hot tail of the distribution, as this is where energy can
be removed most efficiently. The cut energy Ecut must thus be decreased slowly
compared with the elastic collision time scale. This is the adiabaticity condition.
When it is observed, the cloud undergoing forced evaporation will stay in a
quasi-equilibrium state (close to thermal equilibrium) described by a truncated
Maxwell-Boltzmann distribution [61]

f(E) = n0λ
3
the

−βEΘ(Et − E). (2.64)

Θ(x) is the Heaviside step function which is Θ(x) = 1 for x ≥ 0 and Θ(x) = 1
for x < 0, and λth is the thermal de Broglie wavelength.

Figure 2.3 shows an example of a blunt (non-adiabatic) cooling step. The
initial 3D Maxwell-Boltzmann velocity distribution representing oxygen molecules
at T = 5K temperature is cut at a particle velocity of vcut = 130 m/s. This is
equivalent to an energy cut as in equation (2.64). Experimentally, velocity cuts
are commonly achieved by flipping particles into an untrapped state at a specific
trap radius using radio-frequency Zeeman transitions. In the presented exam-
ple, the velocity cut evaporates the fastest 7.5% of the particles, which carry
22.7% of the kinetic energy. Thereafter the remaining particles will rether-
malise by elastic collisions and reestablish a Maxwell-Boltzmann distribution
at temperature T = 4.2 K after several milliseconds.

2.4.2 Thermalisation

Thermalisation describes the process, by which a disturbed system reestablishes
its thermodynamic equilibrium. In the evaporative cooling context, where the
equilibrium is disturbed by removing the hot tail of the Maxwell-Boltzmann
velocity distribution, the cloud thermalises by means of elastic collisions. The
faster this equilibration process is, the more efficiently only the particles with
the highest energies2 can be removed and the more efficiently the evaporation
procedure becomes.

The number of collisions required for thermalisation has been determined
to be around 2.7. This figure was derived analytically in Boltzmann equation
calculations and has been supported by numerical simulation [62, 63]. When
the ergodicity of the system is sufficient, this figure seems to be valid even for
gases reaching quantum degeneracy at low temperatures [64].

The observation of a nearly constant number of collisions for thermalisation
leads to the conclusion that for efficient and quick cooling runs, high densities

2The fastest particles are sometimes called the “hottest” particles, which is obviously not
a correct physical description, but it nicely illustrates the relation between temperature and
[mean] particle velocity [of the ensemble].
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Figure 2.3: Truncated Maxwell-Boltzmann three dimensional velocity distribu-
tion of molecular oxygen. The hot tail of the T = 5 K initial distribution (red
line) is cut at vcut = 130 m/s (dashed line). After several elastic collision times
(several ms), the remaining particles rethermalise at temperature T = 4.2 K
(blue line). Total initial population is normalised.

are favourable. While this also increases inelastic collisions and two- and three-
body loss processes, rapid cooling decreases the effects of Majorana flips and
background gas losses, which scale linearly with time.

Thermalisation and ergodicity

In an ergodic system, the distribution of particles in phase space depends only
on their energy. This is not always the case, because particularly in harmonic
traps the energies along different directions can be separated and consequently
described by separate temperatures. However, unlike the DSMC method, sev-
eral numerical simulation algorithms rely on the ergodicity assumption, which
is only valid when the thermalisation time between spatial directions is smaller
or equal to the collision time.

The ergodic mixing time between the three spatial dimensions is usually
longer than the inelastic collision time, aggravating the adverse effects of cool-
ing mechanisms reduced in dimensionality, for example by gravity (see section
2.2.3). In such cooling situations, ergodicity is not given, ruling out simulation
methods based on this assumption. Wu and Foot [65] have investigated cross-
dimensional mixing in simulations of forced evaporative cooling in one and two
dimensions. They found that cross-dimensional thermalisation can be described
well by an exponential function with a time constant of several collision times,
with full cross-dimensional thermalisation taking tens of collision times. We
will return to this problem in section 4.4.2.
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2.4.3 Adiabatic compression and expansion

Collision rates can be increased by a compression of the trap. This is done
by adiabatically increasing the potential by a factor n. While the phase space
density does not change during this process, ensemble temperature and particle
density increase by a factor of

n2δ/(2δ+3) and n3δ/(2δ+3)

respectively, where δ is the so-called potential parameter. δ characterises the
component of potential energy, which depends on the trap type, δ = 3 for a
linear potential trap, and δ = 3/2 for a harmonic potential. Increasing temper-
ature and density is done in order to speed up thermalisation of the ensemble.
By increasing the trapping potential by a factor of n, the evaporative cooling
process is sped up by a factor of n4δ/(2δ+3) and thus suffers less particle loss by
dipolar relaxion and background gas collisions [62,39].

Adiabaticity of the compression or expansion procedure prevents additional
heating effects. The adiabaticity condition requires that the rate of change in
the trapping potential is very small, compared with the potential, at all times.
Furthermore, adiabaticity requires the rate of change to be small compared
with the elastic particle collision time to ensure thermal equilibration.

The adiabatic compression techniques have proven to be essential in reaching
BEC temperatures in experiments. The large increase in the elastic collision
rate is a huge advantage and experimental groups tune their evaporative cooling
setups to the tightest confinements before the disadvantages of increasing three-
body effects and collisional thickness in the high density “hydrodynamic” regime
start outweighing the benefits.

2.4.4 The hydrodynamic collision regime

Trapped gases at high densities can reach a regime, where the cloud cannot be
considered to be a “dilute gas” anymore. Particularly species with a very large
elastic and inelastic collision cross sections like 133Cs, which thus require high
trap compressions for effective cooling, can reach this regime, where the mean
free path λ between particle collisions decreases to values significantly below
the characteristic cloud size. This is expressed in terms of the Knudsen number

(Kn) = λ/L, (2.65)

where L is the characteristic length scale of the system under consideration.
When the Knudsen number decreases to values smaller than one, the cloud be-
comes collisionally “thick” and evaporative cooling efficiency sharply decreases
to a point, where the adverse heating effects of density dependent inelastic col-
lisions and particle loss due to three-body recombination cannot be overcome
by evaporation.

This is due to the fact that in this regime, rethermalisation through the
cloud slows down significantly and is limited to the transition time of a thermal
perturbation through the cloud [66]. This transition time of thermal perturba-
tions is largely independent of the particle density, with which the detrimental
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inelastic collisions scale up. Furthermore, particles evaporated at the cloud
borders have only average energies, effectively precluding evaporative cooling.

The effects of this so-called “hydrodynamic” regime on the evaporative cool-
ing process are catastrophic and cannot be overcome easily. They have been a
major obstacle in the effort to reach BEC in caesium for a long time. However,
ways to work around the limitations of this collision regime have eventually been
devised. A reduction of the elastic collision rate and thereby the “thickness” is
possible using magnetic control of Feshbach resonances in otherwise all-optical
traps. Weber et. al. [67] have recently succeeded in producing a 133Cs BEC
by achieving a final critical phase space density increase by passively filling a
small optical “trap dimple” potential depression with a sufficiently precooled
population. This method is described in more detail in section 4.5.5.

2.4.5 Evaporative cooling efficiency

Evaporative cooling (with the ultimate goal of reaching the Bose-Einstein con-
densate quantum degeneracy) can be monitored by utilising the phase space
density D, which is defined in terms of the spatial particle density n and the
de Broglie wavelength λdB.

D = nλ3
dB; λdB =

√

2π~2

mkT
(2.66)

As long as D � 1, D is equivalent to the quantum occupation number of the
lowest energy state of the system under consideration. For bosonic particles,
Bose-Einstein condensation will set in when D exceeds a value of 2.612 [62].

It is desirable to cool an ensemble of particles in such a way that the amount
of particles lost during the process is at an absolute minimum. This is because
the amount of particles available to the cooling process is limited by the pro-
cesses used to load the magnetic and/or optical traps, and so far they cannot
be continuously refilled during the cooling process. Typically, traps are initially
filled with some 107 to 1010 particles.

All parameters important to evaporative cooling, such as temperature, atom
number and phase space density, change by certain factors within specific time
intervals. The natural time interval for this is the mean collision time

τ(T ) =
1

nσ(T )v̄
=

1

nσ(T )

√

πm

8kBT
, (2.67)

where n is the density, σ(T ) is the total collision cross section and m is the
particle mass. We can define a parameter α describing this exponential pro-
cess, which characterises the temperature decrease of the ensemble undergoing
evaporative cooling per particle lost in terms of logarithmic derivatives.

α =
d(lnT )

d(lnN)
(2.68)

For temporal discretisation this becomes

α =
ln(T ′/T )

ln(N ′/N)
with T ′ = T + ∆T and N ′ = N + ∆N (2.69)
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and the temperature decrease can be seen to follow a simple exponential curve
as long as α is constant during the cooling sequence:

T (t)

T (0)
=

(

N(t)

N(0)

)α

(2.70)

However, α only describes the temperature, which, as we have seen in the
previous sections, can be increased or reduced by trap compression and relax-
ation without gaining a phase space increase. Optimisation of the evaporative
cooling process should thus concentrate on the phase space density D. Analog
to equation (2.69), which describes the temperature decrease, we characterise
the phase space density increase by a parameter γ [62]

γ =
d(lnD)

d(lnN)
=
α(δ + 3

2)

1 + λ
R

− 1, (2.71)

where δ is the potential factor (δ = 3 for a 3D linear potential, and δ = 3 for a
3D harmonic potential), R = τloss/τel is the ratio between inelastic and elastic
collision times and λ = τev/τel ≈ (

√
2/η)eη is the ratio between evaporation

time τev and elastic collision time τel. The evaporation time depends on the
trap depth η = Vcutoff/(kBT ) (also see discussion in section 4.5.1).

Optimisation of the evaporative cooling process requires finding the optimal
truncation trap depth η for the systems present R ratio. When the system is in
the “runaway evaporation” regime with large enough R, cooling will be rapid
and efficient, leading to an increase in phase space density of many orders of
magnitude. In some cases cooling will be throttled by other effects reducing R,
such as Majorana loss or three-body recombinations. The runaway evaporation
regime is characterised by evaporation at constant or continuously increasing
elastic collision rate

∂(nσv̄)/∂t

nσv̄
=

1

τel

(

α(δ − 1
2)− 1

λ
− 1

R

)

. (2.72)

(Obtained using the table of scaling laws for evaporative cooling [62], repro-
duced in Appendix D.) Thus R needs to be larger than

Rmin ≤
λ

α(δ − 1
2)− 1

. (2.73)

For R = 5000, 1000, 200, linear traps have the highest cooling efficiencies at
trap truncation depths of approximately η = 9, 7, 6. The best total cooling
efficiency is achieved, when 2.71 is optimal at every point in time.

γtot =
ln(Dfinal/Dinitial)

ln(Nfinal/Ninitial)
(2.74)

2.4.6 Effective Volumes

When dealing with problems of trapped gases, in many situations it is useful
to know the “proper size” of the cloud, which in practice is only bounded by
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the size of the trapping region, spreading out through most of it at a very
low density [68, 56]. We can introduce a replacement “effective volume” Veff ,
defined to yield the number of trapped particles when multiplied with n0, the
peak trap density.

N = n0Veff (2.75)

The effective volume thus depends strongly on the trap geometry and the tem-
perature of the trapped atoms or molecules.

Defining a relative density ñ(r) = n(r)/n0, we can calculate Veff as

Veff = V0

∫

V0

ñ(r)dr, (2.76)

where V0 is the volume of the trap region.
Similarly, a two-body collision effective volume can be defined as

Λeff = V0

∫

V0

ñ2(r)dr, (2.77)

which is useful to determine the mean collision rate Γ̄, which is the total collision
rate Γ divided by the number of particles.

Γ̄ =
Γ

N
=

Λeff

Veff
n0σv̄r (2.78)

where v̄r is the mean relative particle velocity, and σ the scattering cross section.
The effective volumes approach yields a few useful analytical expressions

for simple cases, such as for a spherically symmetric linear trap, where Veff '
6V0/η

3. Here, η = Uw/(kBT ) is the trap depth with the maximum potential
Uw of a trapped particle. In the same trap one gets Λeff = 3V0/(4η

3), so that
the mean collision rate becomes Γ̄ = n0σv̄r/8.

In our numerical simulation, the effective volumes approach provides con-
venient algorithms to compute expected collision rates for consistency checks.



Chapter 3

Potential Energy Surfaces

For accurate simulations of evaporative cooling and other cold collision pro-
cesses the knowledge of precise potential energy surfaces (PES) for the collid-
ing and interacting particle species is required. PES is the term for the full
set of potential energy curves for all angular configurations, showing the po-
tential energy between two particles depending on the interparticle separation.
For oxygen O2-O2 this multi-dimensional hypersurface depends on the molec-
ular separation and three angles. Additionally, for oxygen with molecular spin
S = 1, three individual PES for the singlet, triplet and quintet spin manifolds
need to be determined.

We found that available data on O2 PES [69, 70] is comparatively old and
unreliable. In order to operate our simulation of evaporative cooling on a more
modern solid foundation, we decided to attempt the computation of an im-
proved PES using the electronic structure methods of quantum chemistry. The
theory at the base of quantum chemical computations necessary for the treat-
ment of oxygen molecules, the procedures we went through and the results we
finally obtained will be the subject of the following sections in this chapter.

3.1 Physics of the O2 molecule

Oxygen exists in three natural isotopes of different abundances and nuclear
spins [71].

Isotope 16O 17O 18O

Natural abundance 99.757(16)% 0.038(1)% 0.205(14)%
Nuclear spin 0 5/2 0

Thus six isotopically different O2 molecules exist, three of which have non-
zero nuclear spin I. Molecular oxygen is one of the most simple paramagnetic
diatomic molecules. And since some of the molecular oxygen isotopomers have
weak field seeking ground states they can be confined in magnetic traps. This
makes molecular oxygen a target of great interest as a possible future candidate
for Bose-Einstein condensation.

45
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3.1.1 Electronic configuration and ro-vibrational excitations

Atomic Oxygen has an electronic 1s22s22p4 configuration. The O2 molecule
has a ground state electronic configuration of

(1σg)
2(1σu)2(2σg)

2(2σu)2(3σg)
2(1πu)4(1πg)

2.

This state is also called 3Σ−
g . Molecular states are labelled according to their to-

tal orbital angular momentum Lz = ~Λ along the molecular axis. In analogy to
the naming conventions for single electron states with σ, π, δ, . . . , the molecular
orbital angular momentum states are named Σ, Π, ∆, . . . , for Λ = 0, 1, 2, . . .
The first upper left index (2S+1) in the oxygen ground state 3Σ−

g indicates the
S=1 total molecular spin. This homonuclear state has even parity, as it does
not experience a sign change undergoing an inversion through its molecular cen-
tre. This is indicated by the lower right index g, which is part of the standard
notation for molecular states, where g is derived from German gerade, which
means even. At the same time the state is antisymmetric when mirrored at a
plane perpendicular through the line connecting the two nuclei, symbolised by
the negative upper right index. Note that in spectroscopic literature the ground
state is often referred to as X, with electronic excited states labelled A, B, . . .
according to their energy levels from the bottom up [72].

The O2 molecule has five kinetic degrees of freedom.– Three translational,
one vibrational and one rotational degree. In a simple first order approxima-
tion, the kinetic energy can be written as a sum over the three translational
components, molecular vibration and rotation:

E(p, ν,N) =
p2

2m
+ hν0

(

ν +
1

2

)

+
~

2N(N + 1)

2µr2e
(3.1)

ν is the vibration quantum number and N is the rotational quantum number.
µ = m1m2/(m1 +m2) is the reduced mass , which equates to m/2 for homonu-
clear molecules, and re is the nuclear separation. Molecular rotation occurs only
around the major molecular inertial axis at moderate and low temperatures,
because, due to the minute moment of inertia around the remaining axis, the
respective excitation quanta are very large.

Due to Maxwell’s principle of equipartition of energy, an average of 1
2kBT

is assigned to each independent degree of freedom, and thus the average energy
of the oxygen molecule is 3( 1

2kBT ) at very low temperatures, equal to that
of an ideal gas. The molar heat capacity is 3

2R, where R is the universal
gas constant. At higher temperatures, molecular rotations become excited.
Eventually vibrational excitation sets in, once the average molecular kinetic
energy exceeds the vibrational excitation quantisation. This increases the heat
capacity to 5

2R.
As far as our work is concerned, we are mostly interested in the electronic

and vibrational ground state and the lowest rotational states. For oxygen, the
rotational excitation energy is 0.18 · 10−3 eV or 2.1 K (by dividing the energy
by the Boltzmann constant kB). This is smaller by a factor of 103 compared
with the vibrational excitation energy of 0.19 eV, or 2200 K. Thus, at ultra-
low temperatures rotational excitations will still be present, while vibrational
excitations are frozen out.
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Considering cold and ultracold molecular collisions we need to keep in mind
the orders of magnitude of the energy levels in typical molecular spectra. While
electronic transitions have large energies in the order of 1 eV (1015 Hz), molec-
ular vibrational level spacing is of the order of 0.1 eV (1012 Hz), specifically
0.19 eV for O2. The smallest energy differences are found between rotational
levels, in the order of 10−4 eV (1010 Hz) [73], which corresponds to ≈ 1 K. In the
oxygen molecule, rotational excitations have an energy of 1.8 · 10−4 eV, which
is equal to approximately 2K (energy divided by the Boltzmann constant kB).
Thus at temperatures of this magnitude, we effectively only need to consider
few rotational levels while the electronic and vibrational spectra are completely
“frozen out” [55,74,75].

3.1.2 Rotational levels in homonuclear diatomic molecules

Homonuclear molecules have a significant difference compared with correspond-
ing heteronuclear molecules or molecules consisting of two nuclei of different
isotopes of one element such as in the 16O18O molecule. These differences are
brought forward by the nuclear exchange symmetry, which requires the total
molecular wavefunction to satisfy the Pauli principle. The total molecular wave-
function must be symmetric if Ia (= Ib) is integer, and antisymmetric if the
nuclear spins are half-integer.

The contribution of the nuclear spins to the full molecular wavefunction is
either symmetric or antisymmetric. The electronic component of the full molec-
ular state is symmetric in the 3Σ−

g ground state, which we are considering. The
ground state of vibrational excitations is also symmetric. Molecular rotational
excitations can be described by spherical harmonics, which have (−1)N parity,
and thus the rotational component of the total molecular state ψ is symmetric
for even rotational quantum numbers N and antisymmetric for odd N .

Applying the Pauli principle to the symmetry relations of the full molecu-
lar wavefunction, one finds that for even (and zero) integer total nuclear spin
(bosonic nuclei) only odd rotational quantum numbers N will occur, while for
odd integer total nuclear spin (fermionic nuclei) only even rotational quantum
numbers N will be found, such as in the 17O2 case [36].

3.1.3 Prospects for evaporative cooling

A close investigation [71, 31] of the coupling of molecular and nuclear spins in
the oxygen molecule shows that several states, which can be trapped magnet-
ically, are among the molecular states of the three different oxygen isotopes.–
The interaction energy of these states increases with increasing magnetic field
magnitude.

In the Zeeman level scheme shown in figure 3.1, it becomes clear that the
|N, JMJ〉 = |0, 1 1〉 state of the 17O2 molecule in particular is well suited for
magnetic trapping: In contrast to molecules of the other oxygen isotopes, spin
statistics in this molecule do not allow an energetically lower lying untrappable
J = 0 state. (In the above context N is the rotational quantum number, J is
the spin quantum number, and MJ stands for the quantum number of the spin
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projection in the external trap magnetic field.)
A lower lying untrapped state within the N = 1 manifold provides an

exothermal decay channel from J = 2 to J = 0 for the most abundant 16O2

and 16O18O molecular oxygen isotopomers. In the N = 0 manifold, which we
find the 17O2 molecule in, no such decay channel exists and the only significant
trap loss channel is a change in spin-projection from MF = 1 to MF = 0 or
-1. Except for the Zeeman splitting in the trap magnetic field these states are
energetically degenerate and the transition rates are small [31]. Therefore the
MF = 1 state is an excellent candidate for magnetic trapping.

A more recent study has shown that the external trap magnetic field has
a larger than expected influence on the scattering properties of magnetically
trapped particles. In [54] Volpi and Bohn show for 17O2 that the evapo-
rative cooling condition for magnetic fields larger than approximately 50 G
(10000 Gauss = 1 Tesla) no longer holds true. For efficient evaporative cooling
the elastic scattering rate Kel needs to be about a hundred times larger than
the inelastic scattering rare Kloss. Using an oxygen-helium PES [76], they also
find that the inelastic collision rate with a He buffer gas increases considerably
in a magnetic field, which is of less concern. At the lowest buffer gas cooling
temperature, it should be possible to obtain a magnetically trapped sample,
large enough to start the evaporative cooling process.

However, magnetic trapping of molecular oxygen requires fairly strong mag-
netic fields, much larger than 50 G, in the Tesla range (see section 2.2.1), because
laser cooling is not feasible and trap loading needs to be done at the compara-
tively high temperatures of buffer gas cooling (section 2.2.5). Thus evaporative
cooling of molecular oxygen proves to be trickier than expected.
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Figure 3.1: The lowest Zeeman energy levels of O2. a) Shows the molecular
manifold for odd N rotational quantum numbers and b) for even N . Which
manifold a homonuclear O2 isotopomer belongs into depends on its combined
nuclear spin I. For even I, it belongs into the odd N manifold and vice versa.
Zeeman energies for states, which can potentially be trapped magnetically are
drawn in red. Figure from [31] used with permission.
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3.2 Methods of Quantum Chemistry

The accurate solution of the quantum mechanical many-body Schrödinger equa-
tion is the main concern of large areas of physics and chemistry. While ana-
lytical solutions are only possible for two-body problems such as the hydrogen
atom or contrived examples of particles in square wells, the really interesting
problems are many-body problems. In quantum chemistry, which is concerned
with solutions to the Schrödinger equation of electronic wavefunctions, any-
thing more than a H+

2 ion is a difficult multi-electron problem, which generally
does not have analytical solutions. Exceptions are large and highly symmetri-
cal molecules, such as C60 molecules and a number of polymers. This general
lack of analytical solutions for most multi-particle systems is the reason, why
approximate theories and methods in this field are of tremendous importance.

The quantum chemistry program package we have used for our computa-
tions uses the approximative Hartree-Fock (HF) theory and its techniques. A
brief overview of Hartree-Fock theory and its application by quantum chemistry
programs will be given in the following sections. Partially this will follow along
the lines and use the conventions of the presentation found in [77,78].

A different and also very successful approach to problems of electronic struc-
ture uses Quantum Monte Carlo (QMC) techniques, which we have not used
in this work. For an overview and an introduction to QMC we refer the reader
to [79,80].

3.2.1 Hartree-Fock Theory

Hartree-Fock and most other theories of electronic structure are based on the
Born-Oppenheimer approximation and the neglect of relativistic effects such as
potential retardations. Within these approximations, nuclei and electrons have
a negligible momentum exchange because of their huge differences in mass.
Carrying similar amounts of momentum, electrons move very fast within their
orbitals, compared with the motion of the nuclei. For electronic structure con-
siderations it can thus be assumed that the nuclei are virtually at rest while
electronic orbitals have ample time to relax into their ground states or follow
any nucleic motion adiabatically.

This allows simplifications to the Hamiltonian for the electronic problem
since the nuclear motion and the electrostatic nuclear repulsion can be sepa-
rated. The separated nuclear electrostatic repulsion provides a constant offset
to the Hamiltonian for the electronic problem and its eigenvalues. The Hamilto-
nian for nuclear motion (including electron shells) then contains only the nuclear
kinetic energy part, nuclear-nuclear electrostatic repulsion and an electronic po-
tential, depending on nuclear separation, which is in fact the PES as resulting
from the solution of the electronic problem. The nuclei, or the molecules in
our (O2)2 problem, thus move within the PES, explaining its importance for all
scattering effects.

The separated Hamiltonian for the electronic problem is the following (in
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atomic units as described in appendix C):

H =
∑

i

−1

2
∇2

i −
∑

i

∑

a
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ria
+

1

2

∑

i

∑

j 6=i

1

rij
(3.2)

This Hamiltonian describes the electron kinetic energy (first term) and the
Coulomb interaction of N electrons of unit negative charge and ions of charge
Za. Distances are relative distances of the type rij = |ri − rj |. The second
term describes the Coulomb attraction between electrons and ions, VeN , and
the third term, Vee, describes the repulsion between the electrons.

The full electronic wavefunction Ψ of an atom can be approximatively de-
scribed by a combination of individual single electron orbitals. This approach is
known as “Linear Combination of Atomic Orbitals” (LCAO). Molecular orbitals
(MO) are also formed by LCAO. Because of the fermionic nature of electrons,
two electrons of equal spin cannot occupy a single orbital. Electronic spatial
orbitals ψ(r) thus must have a spin component, which is usually symbolised by
the two orthonormal spin (↑/↓) functions α(ω) and β(ω), and are then referred
to as spin-orbitals χ(x) = ψ(r)α(ω) or χ(x) = ψ(r)β(ω), where x has three spa-
tial and one spin coordinate. In order to satisfy the fermionic Pauli exclusion
principle, LCAO requires the product of individual single electron spin-orbitals
to be antisymmetrised, so that an exchange of any two electrons causes a sign
change in the product and so that two electrons with parallel spin are explicitly
correlated.

Ψ(x1,x2, · · · ) = −Ψ(x2,x1, · · · ) (3.3)

For two spin-orbitals χ1(x1) and χ2(x2), the product state thus becomes

Ψ(x1,x2) =
1√
2
[χ1(x1)χ2(x2)− χ1(x2)χ2(x1)] (3.4)

For products of two or more single electronic spin-orbitals the antisymmetric
product can conveniently be written as a Slater determinant, which has all the
properties required by the antisymmetrisation. In particular, the determinant
vanishes when any two spin-orbitals are the same. It can also be written using
the ket notation as a short-hand.

Ψ(x1,x2, · · · ,xN ) = (N !)−
1
2

∣

∣

∣

∣

∣

∣

∣

∣

∣

χ1(xi) χ1(xj) · · · χ1(xk)
χ2(xi) χ2(xj) · · · χ2(xk)

...
...

. . .
...

χN (xi) χN (xj) · · · χN (xk)

∣

∣

∣

∣

∣

∣

∣

∣

∣

= |χ1(xi), χ2(xj), · · · , χN (xk) 〉 (3.5)

The combination of spin-orbitals that best describes the ground state Ψ0 will
have the lowest energy eigenvalue E0 = 〈Ψ0|H|Ψ0〉 in the Schrödinger equation
HΨ = EΨ with the simplified Hartree-Fock Hamiltonian as discussed above.

By choosing an orthonormal set of spin-orbitals 〈χi|χj〉 = δij , we can now
minimise the energy with respect to the spin-orbitals χi, where the εi are the
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orbital energies of the spin-orbitals χi, acting as Lagrange multipliers introduced
due to the minimisation side condition of normalised orbitals in the rigorous
derivation (see [77]) of the Hartree-Fock equation.

∂

∂χ

[

〈H〉 −
∑

i

εi

∫

|χi|2dx
]

= 0 (3.6)

The resulting equations for the best spin-orbitals (minimising the energy) are
the Hartree-Fock integro-differential equations

εiχi(xi) =

(

−1

2
∇2

i −
∑

A

Za

riA

)

χi(xi) +
∑

j

∫

dxj
|χj(xj)|2

rij
χi(xi)

−
∑

j

δσiσj

∫

dxj

χ∗
j (xj)χi(xi)

rij
χj(xj), (3.7)

where rij = |xi− xj |. The first term is the kinetic energy of the electrons. The
sum over A in the second term calculates the Coulomb potential by A ions,
static within the Born-Oppenheimer approximation. The third term is the
Hartree term describing the electrostatic effect of the other electrons averaged
over their individual probability distributions. The unphysical self-interaction
for i = j in the Hartree term is cancelled in the fourth term, the exchange term,
mandated by the Pauli principle. This term will vanish unless the two electrons
have the same spin σ.

In the literature, a Fock operator

f = h+
∑

j

[Jj −Kj ] (3.8)

is often defined so that equation (3.7) can be written as f |χi〉 = εi|χi〉, where
h is the single particle Hamiltonian for an electron moving in the field of the A
ions (x-dependence omitted). J represents a Coulomb operator, averaging the
interaction r−1

12 of a second electron density distribution over all space and spin
coordinates. The antisymmetric exchange operator K is a nonlocal operator
because it does not define a simple spatial potential; it takes care of the spin
exclusion requirement.

For numerical computations, the spatial part of the spin-orbitals is expanded
in a finite set of N functions φ with coefficients Cki

ψi(r) =
N
∑

k=1

Ckiφk(r). (3.9)

The choice of this finite set will ultimately restrict the accuracy of the Hartree-
Fock molecular orbitals to the space spanned by this basis. While it seems
prudent to choose the basis functions close to actual orbital functions, such as
Slater orbitals proportional to e−ξ|r|, consideration of computational tractability
dictate basis sets which are easy to integrate analytically, such as Gaussian
orbital functions proportional to e−ζ|r|2 . This is because the above expansion
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reduces the problem of calculating the electronic orbitals to the problem of
finding the appropriate coefficients Cki for the chosen basis, which requires a
large number of integrations of the basis set as we will outline below.

In a closed-shell approach, the spin-orbitals are restricted to doubly oc-
cupied (opposite spin) spatial orbitals, and the spin component can be elim-
inated from the Hartree-Fock equation. Using the above basis expansion in
this Hartree-Fock equation and defining basis function overlap integral matrix
Skl =

∫

dr1φ
∗
k(r1)φl(r1) (due to a non-orthogonal set of basis functions) and a

Fock matrix Fkl =
∫

dr1φ
∗
k(r1)f(r1)φl(r1), we get the Roothaan equations

∑

l

FklCli = εi
∑

l

SklCli, (3.10)

where i is the index of the basis set expansion chosen for the problem.
The set of matrix equations for the coefficients Cli can be solved numer-

ically using techniques such as iterative diagonalisation, in what is called a
self-consistent field (SCF) method. Starting from an initial guess at the correct
spin-orbitals, iterations are carried out, consecutively replacing and improving
the initial guess with the result of the previous step. This proceeds until the
resulting orbitals, as defined by the set of coefficients, do not change (much) any
more and the solution has thus become self-consistent in the iteration process.

It must be noted that the concept of universally labelling molecular and
atomic orbitals by their angular momenta is an artifact which can be attributed
to the Hartree-Fock single electron orbital approach, where the distribution of
many electrons is given simply by the sum of the single electron densities. Fur-
thermore the single-determinant Hartree-Fock method neglects electron corre-
lations, using the simple non-local average potential of the other electrons.

These limits of Hartree-Fock theory can be improved by a number of other
elaborate methods, such as for example perturbative methods, as described in
3.2.3, or using the Configuration Interaction (CI) and Coupled Cluster (CC)
methods. Of the large number of methods used in quantum chemistry we will
outline only the ones relevant for our work.

3.2.2 Restricted open shell Hartree-Fock (ROHF)

The closed shell Hartree-Fock method described in the previous section assumes
that spin-orbitals are occupied by two electrons with opposite spin. In an
open shell approach, orbitals occupied by single electrons of arbitrary spin are
respected in addition to doubly occupied orbitals, resulting in a larger basis
function set. This can easily be done using a (larger) Slater determinant of
single electron spin orbitals. Thus within the Slater determinant representing
the system LCAO in the unrestricted open shell HF approach, individual singly
occupied orbitals may appear twice with opposite spin components.

In all other respects the open shell approach is very similar to the closed
shell approach [26]. It is important, however, to choose an appropriate number
of higher orbitals in the open shell approach, depending on the situation at
hand. The drawback of the open shell method is that the Slater determinant
in this setting is not necessarily an eigenfunction of the total spin anymore.
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(It is in the closed shell approach, where all electronic spins are paired with an
electron of opposite spin in all contributing spatial orbitals.) Since the total spin
S commutes with the Hamiltonian in equation 3.2, it is important for systems
with non-zero total spin to choose Slater determinants which are eigenfunctions
of the total spin for calculations using the open shell methods.

An open shell ansatz for the wavefunction is required, which ensures that the
corresponding Slater determinants are already eigenfunctions of the total spin.
This ansatz for the wavefunction is called the Restricted Open shell Hartree-
Fock (ROHF) method. This is the method used in our O2-O2 supermolecule
PES calculations, which require an open shell approach due to their non-zero
total spin.

The ROHF ansatz starts out from a spin S=0 closed shell wavefunction (all
electrons paired with one of opposite spin). Then it is assumed that one single
electron of a high orbital is excited from state m to state n, undergoing a spin
flip at the same time, yielding a triplet state with a z component of -1.

3
−1Ψ

n
m = |Ψ1Ψ̄1 · · ·ΨgΨ̄gΨ̄mΨ̄n| (3.11)

Here, the Ψ̄ spinorbitals have spin down. The n and m indices in 3
−1Ψ

m
n sym-

bolise the excitation from orbital m to n. Eigenstates of the total spin S=1 can
now be obtained by application of the spin operator S+, which raises the spin
z component by 1.

S+ =
∑

j

[σx(j) + iσy(j)], (3.12)

where σx and σy are the common spin matrices and j enumerates the electron
they operate on. Applying the S+ operator once and twice, we get the remaining
two states of the S=1 triplett as [26]

3
0Ψ

n
m = |Ψ1Ψ̄1 · · ·ΨgΨ̄gΨmΨ̄n| − |Ψ1Ψ̄1 · · ·ΨgΨ̄gΨnΨ̄m|

3
1Ψ

n
m = |Ψ1Ψ̄1 · · ·ΨgΨ̄gΨmΨ̄n| (3.13)

With a set of such restricted spin orbital functions, which are now insured to
be eigenfunctions of the total spin S, Hartree-Fock equations can be derived
by variation of the energy with respect to the set of spin orbital wavefunctions,
analog to the method described for the closed shell case in section 3.2.1.

Complete active space self-consistent field (CAS-SCF)

The CAS-SCF algorithm uses a set of Slater determinants in the molecular
“active space”, spin orbitals representing molecular states with non-zero total
spin (compare level scheme in figure 3.2). Active space orbitals are created by
spin ladder operator S+ =

∑

j [σx(j) + iσy(j)] acting on the Slater determinant
of the singly occupied spin orbitals. (The sum runs over the electrons and
the σx,y symbolise the common spin matrices.) These active orbitals can be
thought of as filled with an unpaired electron raised from a paired lower orbital
and undergoing a spin flip. This results in a non-zero spin. These orbitals
are important for electronic interaction within the supermolecule and have not
been accounted for in previously published work. In our numerical work we
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have used an active space of four electrons and four orbitals. This spans a
space of possible configurations (Slater determinants) for singlet, triplet and
quintet (total spin S = 0, 1, 2) states of O2, with a single realisation of S = 2,
12 possible realisations of S = 1 and 35 realisations of S = 0.

The SCF method to iteratively solve this problem for each of the three total
spin configurations (singlet, triplet, quintet) uses a linear combination of Slater
determinants ΨI of the active space configurations.

ΨStotal =
∑

I

cStotal
I ΨI , (3.14)

where cI represents the Slater determinant coupling coefficients, which are pre-
determined by spin and spatial symmetry. The introduction of several Slater
determinants makes the CAS-ROHF method computationally more difficult
than the closed shell Hartree-Fock method.

Figure 3.2: Spin orbital level scheme used for CAS-SCF numerical solution of
the O2-O2 supermolecule electronic problem using the Gamess quantum chem-
istry program. The spin orbitals are classified into three subspaces. Spin or-
bitals bracketed in D are doubly occupied with electrons of anti-parallel spins.
Bracket A marks the “active space”, which is only partially occupied, allow-
ing multi-configuration non-zero total spin eigenfunctions within a ROHF ap-
proach. The V bracket, which is unbounded towards higher orbitals, marks
virtually occupied orbitals used in perturbative calculations.

3.2.3 2nd order Møller-Plesset perturbation theory (MP2)

As we have outlined, the Hartree-Fock methods presented in the previous sec-
tions impose several limitations on the resulting orbitals. The Hartree-Fock
result EHF can be considered to be a 0th-order approximation of the exact
electronic energy Eexact. The difference is due to the LCAO approximation
ansatz of Hartree-Fock theory. The true combined wavefunction of two or more
electrons is not exactly equal to the LCAO anti-symmetrised product of the sin-
gle particle wavefunctions used therein. Hartree-Fock theory only accounts for
electronic interaction using the average field by integrating over the electronic
probability distributions. Thus electrons in the SCF spin orbitals are effectively
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too close together and the Hartree-Fock methods yield an overestimate of the
true electron-electron interaction.

Improvements to the approximations can be made using perturbation theory
approaches, for example. This allows the errors, due to neglected electronic
correlations within the Hartree-Fock method, to be reduced by determination
of the correlation energy Ec to a higher order.

Ec = Eexact − EHF (3.15)

Møller-Plesset perturbation theory (MPPT) is an application of Rayleigh-
Schrödinger many-body perturbation theory (RSPT) using the Hartree-Fock
Hamiltonian as a 0th-order Hamiltonian H0 = HHF . The Hamiltonian used in
the perturbation calculations is H = H0 +Hpert, with

Hpert =
1

2

∑

ij

1

|ri − rj |
−
∑

j

[Jj −Kj ] , (3.16)

where J is the Coulomb integral operator and K is the exchange integral op-
erator as defined by equations (3.7) and (3.8). This perturbation Hamiltonian
“undoes” the simplifications of Hartree-Fock theory and replaces the electronic
interaction with the exact r−1

ij operator. With this Hamiltonian, numerical MP2
implementations are able to recover up to 98% of the correlation energy Ec in
most situations [81]. MP2 employs Taylor series expansions of H0 eigenstates
and energies, taking into consideration unoccupied virtual spin orbitals marked
in bracket V in the level scheme shown in figure 3.2. Figuratively, correlated
electrons avoid each other by populating unoccupied V orbitals, which are part
of the approximative expansion of the exact electronic orbitals, with a non-zero
probability.

The Hartree-Fock result EHF consists of the 0th and first order energies as
obtained from the perturbation Hamiltonian (3.16). EHF = E(0) +E(1), due to
the two similar terms in the respective Hamiltonian HHF . The first perturba-
tion result improving the Hartree-Fock result is thus the second order energy
E(2). Higher order corrections can also be calculated at increasing numerical
expense. For a detailed derivation of MP2 method and algorithm, see [77].

3.3 Ab Initio Computation of an O2−O2 Potential
Energy Surface

An important input for the simulation of evaporative cooling are the elastic
(spin-preserving) and inelastic (spin-changing) scattering rates. A comparison
of elastic collision and loss rates, integrating scattering rates over all elastic and
inelastic channels, allows judgement about whether evaporative cooling of a
molecule will be feasible or not. While these rates are now well-known for alkali
atoms, where the potential energy surfaces (PES) are simple and isotropic, the
rates are not easily accessible for molecules.

Recently, Avdeenkov and Bohn have calculated oxygen-oxygen scattering
rates in [31], based on potential energy surfaces obtained by Bussery and
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Wormer [69, 70, 82]. The PES were calculated employing a perturbation theo-
retical Hartree-Fock approach (LCAO-MO) for separate O2 molecules. Subse-
quently second-order perturbation theory was used to include the interaction
between two O2 molecules.

The problem with the scattering data is that the scattering rates depend
strongly on the scattering potential (described in full by the PES). Thus, very
accurate theoretical estimates or (preferably) experimental values are needed.
In order to improve the PES data available for such computations of molecular
scattering data, we have theoretically derived a PES by a full Hartree-Fock
ab initio approach. Unlike Bussery and Wormer, we have used a O4 super-
molecule approach in the rigid rotor approximation. This means that for each
O2 molecule subset of the O4 super molecule, the binding length is kept con-
stant at all times. We have calculated the electronic wavefunctions and the
total energy with all nuclear coordinates fixed. To obtain the full PES, this
method requires calculation of a large number of nuclear position configura-
tions, which are parametrised by the three orientational angles θ1, θ2 and φ,
and the distance R between the two O2 subsets of the supermolecule. Some
important configurations are shown in figure 3.4.

Figure 3.3: O2-O2 Dimer example configuration illustrating the four degrees of
freedom (R,θa,θb,φ) in configurational space.

We ran the “gamess” quantum chemistry program [83] on a cluster of eight
dual-processor Linux workstations which needed several weeks of computation
time to complete the data set. The numerical techniques employed by the
Gamess program to obtain approximate solutions for the electronic supermolec-
ular O2-O2 problem have been outlined above in section 3.2. In the following
sections we will describe this work in more detail and present the results.
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H (90, 90, 0) X (90, 90, 90)

T (0, 90, 90) L (0, 0, 0)

Figure 3.4: Illustration of the O2-O2 supermolecule in H, X, T and L configu-
rations.

3.3.1 Computational Setup

The computational work that needed to be done for the discrete calculation of
the PES with a resolution sufficient to provide a solid base for improvement of
the best known collisional properties of oxygen was huge. A single workstation
computer would have been busy with this task for months or even years.

However, the problem presents a natural parallelism in the fact that it
consists of discrete and independent points that need to be calculated. What
this means is that the task can be computed by a large number of independent
computers working on it at the same time. In a parallel setup like this the
time required to complete the task scales inversely proportional to the number
of computers used, once it has all been configured. We needed an automatic
control program that would run in the background of a master node, which was
able to distribute the workload over all available workstation computers. At the
same time care was needed not to overload the systems so that the normal daily
work routine of colleagues would not be affected by this large scale computation.
Eventually, after trying out a few publicly available programs [84], it was found
that none was suitable, so we decided to develop our own.

An automatic work queuing and job distribution program was written using
the Perl [85] script programming language. This language has proven to be
invaluable in all sorts of numerical and computer administrative data handling
problems that the author has encountered during his studies. It is ideally
suited to process text and data files, and it is easy to “throw in” as a quick
solution interfacing different data formats and programs. At the same time it
is fast because Perl compiles its scripts before execution and it also allows more
complex and modular programs to be built by using a vast library of code,
which is freely available online. Perl has been adapted as a flexible tool for
data acquisition and processing in other projects related to this work. Some of
the procedures have been outlined in appendix A.

A version of the Perl::SSH module [86] was used by our automatic load
balancing program to periodically log into each of our workstations and check
the load and the status of individual computation jobs. The Perl::SSH module
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unfortunately does not seem to be actively maintained by its creator and we
needed to adapt it for use with the latest versions of OpenSSH, which has
become the standard to remotely log in and use computers in a secure way.

A job input list was kept on the master node which allowed the enter-
ing of new computation jobs into the queue while the program was running.
Additionally, the number of computational processes per working subordinate
workstation node and the maximum loads could also be configured on the mas-
ter node without interrupting the program. Once this had been set up, the
system proved to be very tolerant against crashing nodes and required a mini-
mum of administration. Failed jobs were identified during post-computational
processing of the resulting data files and could be reentered into the work queue
after making necessary changes to their configurations.

Check for new jobs

Check load on slave nodes

Load initial queued job list

No

Yes

Sleep for a minute

Any jobs left?

No

End

Yes

Free capacity?

Start new jobs on slave nodes

Figure 3.5: Simple flowchart of the queuing program allowing distributed
parallel processing of the individual quantum chemical calculations using the
“gamess” quantum chemistry program package.



60 CHAPTER 3. POTENTIAL ENERGY SURFACES

3.3.2 Exploiting symmetries to reduce complexity

The (R, θ1, θ2, φ) parameter space needed to be discretised in order to run the
quantum chemistry program for every chosen discrete point in this space. Var-
ious symmetries of the O2-O2 supermolecule can be exploited to cut down on
the amount of points needed to compute a full PES. Only 1/8 of the total pa-
rameter space in θa, θb and φ needs to be sampled. The particular symmetries
allowing this are the following.

V (θa + π, θb, φ) = V (θa, θb, φ) (3.17)

V (θa, θb + π, φ) = V (θa, θb, φ) (3.18)

V (θa, θb,−φ) = V (θa, θb, φ) (3.19)

V (−θa,−θb, φ) = V (θa, θb, φ) (3.20)

V (θa,−θb, φ− π) = V (θa, θb, φ) (3.21)

V (θb, θa, φ) = V (θa, θb, φ) (3.22)

The first two rules exploit the atom exchange symmetry in the homonuclear
oxygen molecules. Rules number three and four show that negative angles do
not change the system as long as θa and θb are treated the same. Also, all three
angles can be negated at once without changing the system.– All symmetry rules
can be combined. The last two rules characterise the effect of a single θ angle
negation and the effect of θ angle exchange respectively. These symmetries
reduce the parameter space that needs to be sampled to the intervals.

θa ∈ [0, π/2]

θb ∈ [0, π/2] (3.23)

φ ∈ [0, π]

In order to allow a maximum resolution of up to la,b = 8 partial waves in the
compiled PES after the computation has been done, the angular discretisation
needed to be high. To avoid aliasing beyond the Nyquist frequency, we need
more than 4 samples on a π/2 angle interval. A resolution exceeding this was
chosen in order to be able to handle a small number of data gaps in the final
PES compilation. We took 7 samples at the θ angles (in degrees: 0, 22.5, 35,
45, 67.5, 80, 90), 9 samples of φ (0, 22.5, 45, 67.5, 80, 90, 112.5, 135, 157.5)
and 24 radial samples of R on the angle intervals described above and on a
radial interval of R = [2.5Å, 10Å] (2.5, 2.625, 2.75, 2.876, 3.0, 3.125, 3.25,
3.375, 3.5, 3.625, 3.75, 3.875, 4.0, 4.125, 4.25, 4.375, 4.5, 4.75, 5.0, 5.5, 6.0, 7.0,
8.0, 10.0 Å). The radial resolution of the sample points is arbitrary, as it is
possible to calculate individual independent PES “shells” at specific radii. In
order to get a meaningful model of the radial dependence and to investigate the
PES minima, our 24 points proved to be a reasonable choice. Some degenerate
configuration overlap (for example φ=0, 180) was tolerated deliberately in order
to do some consistency checks on the resulting data. We also ignored the θ
exchange symmetry, which leads to two different sets of configuration data for
the same physical problem. Sometimes one of the equivalent calculations would
fail while the corresponding other one yielded results.
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Since the whole 10x10x9x24/2 parameter space (subtract 9x9x24 for φ de-
generacy in the θ = 0 case) had to be calculated for the three O2-O2 spin man-
ifolds (singlet, triplet and quintet), we had to compute 26568 individual points.
Added redundancy and repeated computation of failed runs multiplied this fig-
ure by more than 2. Every individual gamess job ran for approximately half
of an hour on our workstation computers (typically a Pentium3 with 1 GHz).
Since they all have two CPUs, they could handle two jobs at the same time.
Running 24 hours a day on 8 dual CPU workstations, the raw computational
task was completed after approximately 2 months.

3.3.3 Spin orbital basis set and methods

The spin-orbitals χi(x) used in the quantum chemistry program Gamess for
our O2-O2 computations are expanded in a fairly large “correlation-consistent
polarised Valence Triple Zeta” (cc-pVTZ) basis set [87].

Correlation-consistent basis sets are optimised for computation of correla-
tion energies as part of the numerical procedure. This optimisation is indepen-
dent of the method which is eventually used to compute correlation energies
after the initial Hartree-Fock calculations. While we have used Møller-Plesset
(MP2), the basis set can also be used within the Configuration Interaction (CI)
or the Coupled Cluster (CC) methods [77].

The valence orbitals of the basis set are split into three separate parts (va-
lence triple zeta, VTZ), which are then combined by variational methods used
in the numerical algorithms to obtain best possible results from the Hartree-
Fock method. The polarisation part consists of orbitals which are not occupied
in a free atom. In the oxygen case these are the 2d and the 1f orbitals.

In a first step of the numerical calculation, the expansion coefficients and
the determinant prefactors cI (from equation 3.14) are varied to minimise the
energy using a CAS-SCF algorithm as outlined in sections 3.2.1 and 3.2.2.

As a second step, second-order Møller-Plesset perturbation theory (MP2)
(section 3.2.3) was used to improve the dynamic electronic correlation energy,
an important effect not observed by simple Hartree-Fock theory. The opti-
mised basis set improves the performance and accuracy of the MP2 part of the
calculations.

3.3.4 Data processing, dealing with gaps

On such a large configuration data set it is almost impossible to investigate the
reason for the failure of individual configuration gamess runs. As mentioned
above, we resorted to a certain redundancy in the input configuration data
set by ignoring the θ exchange symmetry and having a φ = 0 and φ = π
configuration overlap. These measures also served as consistency checks, which
are necessary on such a largely automated process. It also allowed us to close
many gaps in the PES data recovered from the “first” non-redundant part of
the run.

While the PES data set we computed in this way was almost complete,
some of the O2-O2 configurations consistently failed in the gamess program.
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Even after several tries with slight modifications and different approaches an
interaction energy could not be found in some configurations. Thus the PES
raw data we obtained after the ab initio gamess calculation had several small
“holes”, which we subsequently closed by radially fitting each (θa, θb, φ) config-
uration set to the following model potential function using the nonlinear fitting
functions of the Mathematica computer algebra system [88].

Vfit(R) = c1 + c2
(

e−c3/(R−R0) − 1
)2

+
c4

R6
+

c5

R12
(3.24)

Fitting the raw data to this function, care was taken to find and appropriately
weight the potential minima R0 and the asymptotic behavior for large radii.
The fitted function was then used to determine the missing data points in our
raw PES.

3.3.5 Numerical fit to angular functions

The patched PES can be expanded in spherical harmonics in order to separate
the angular and radial dependencies of the intermolecular potential [70, 69, 89,
90,91]:

V (R, θa, θb, φ) =
∑

la,lb,l

V lalbl(R)Al 0
lalb

(θa, θb, φ) (3.25)

The angular functions as used above are defined as follows:

Al 0
lalbl

(θa, θb, φ) =

√

2l + 1

4π

la
∑

ma=−la

(

la lb l
ma mb 0

)

·

·Yla,ma(θa, φ)Ylb,−ma(θb, 0) (3.26)

where the sum actually runs from −min(la, lb) 6 m 6 min(la, lb) because of the
homonuclear exchange symmetry. Here, the Ylm are spherical functions defined
as

Ylm(θ, φ) =

√

2l + 1

4π

(l +m)!

(l −m)!
Plm(θ)eimφ. (3.27)

Using only even numbers (for the 17O2 even N manifold) and limiting la and lb
to a maximum value of 8 and l to 14 in our numerical expansion, we obtain a
set of 54 angular functions Al 0

lalb
. Since only the most simple of these functions

are short enough to be written and used by humans, the work was done using
the Mathematica program.

3.3.6 Radial fit of angular coefficients

The result of the fitting of our PES to the angular functions is a set of V lalbl(R)
coefficients. For each angular function this set contains 24 points, one for each
discrete radial step.

The result from the angular fit is a radially dependent list of coefficients
for the individual spherical functions. We found that this coefficient list can be
radially fitted to the following model function with 8 free variables c1 to c7 and
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R0, where x = (R−R0)/R0, and R0 usually is the minimum of the function to
be fitted.

c1 + (c2 + c3 x+ c4 x2) e−c5 x−c6 x tanh(c7 x) (3.28)

In combination the angular and the radial fits cut down the data needed to
describe our PESs for each spin multiplet to only 8 coefficients for each of the 54
angular functions (for an expansion up to (la,lb,l)=(8,8,14) angular functions).
A 3D section of a fitted full S = 3 multiplet PES in compariason with the raw
computed data is shown in Fig. 3.6. Radial cuts of the fitted PES for specific
configurations are shown in Fig. 3.7.

3.3.7 Computation of virial coefficients

Finally, in order to check the quality of the angular fit of the full PES, we
have calculated the second virial coefficients B(T ) at temperature T for oxy-
gen (Shown in Fig. 3.8). The second virial coefficient for a given tempera-
ture is computed as a four dimensional numerical integration of the potential
V (R, θa, θb, φ) for each of the three spin manifolds.

B(T ) = NA
2

2π
∫

0

dφ
π
∫

0

sin θadθa

π
∫

0

sin θbdθb

·
∞
∫

0

R2dR
[

1− e−
V (R,θa,θb,φ)

kT

]

(3.29)

We used a Gauss-Legendre integration method as outlined in [92] in a C++ pro-
gram for this purpose. The three PESs could were imported into the program
using the radial and angular analytical expansion discussed above.

The second virial coefficient characterises the difference of a physical gas
compared with the ideal gas in the high temperature approximation and is thus
directly related to the a and b values in the van der Waals (VDW) equation

RT =
(

p+
a

V 2

)

(v − b), (3.30)

where R is the universal gas constant and v = V/n is the molar volume.

The relation between the van der Waals equation and the second virial
coefficient is shown in detail in references [93] and [94]. Therefore, we are only
going to summarise it here.

The second virial coefficient can be split into a long range, where the inter-
molecular potential V (R) is attractive (for R > 2r0) and a short range compo-
nent, where V (R) is repulsive for 0 < R < 2r0. Here, r0 is an approximative
“molecular radius”.

B(T ) = NA2π

2r0
∫

0

[1− e−βV (R)]R2dR+NA2π

∞
∫

2r0

[1− e−βV (R)]R2dR (3.31)
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With β = 1/(kBT ). Thus the exponential in the first integral is approximately
unity and the integral becomes

2π

2r0
∫

0

R2dR =
16

3
πr30 = 4v0 = b, (3.32)

where b is the b-coefficient in the VDW equation and v0 is an approximated
“molecular volume” v0 = (4/3)πr30.

The second integral in equation (3.31) can be developed for |βV | � 1 and
we eventually get as an approximative result for this part

− a

kBT
= 2π

∞
∫

2r0

V (R)R2dR, (3.33)

where a is the a-coefficient in the VDW equation. Thus the second virial coef-
ficient can be written as

B(T ) = b− a

kBT
. (3.34)

It is evident that the second virial coefficients provide an excellent way to
compare our computed PES with experimental data at high temperatures.
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Figure 3.6: Section of the O2-O2 PES for the spin quintet configuration.
θa = 45◦, θb = 67.5◦, φ into the paper plane φ=[0,π], radius R (drawn hori-
zontal) in Å units, interaction energy V (R, θ1, θ2, φ) vertical in µHartree (µH)
units. The original raw potential energy surface is drawn in blue, while the
radially fitted PES is drawn in red. The high quality of the numerical fit makes
them hard to distinguish in this Mathematica plot. The PES approaches V = 0
for large R.
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Figure 3.7: Potential energy surface cuts for relevant (θa,θb,φ) configurations of
the O2 dimer. Plotted are the potentials for the three spin manifolds (S = 0
singlet, S = 1 triplet, S = 2 quintet). The singlet potential is the deepest (red
line), the triplet potential is represented by the middle lines (dashed blue), and
the quintet potential is the most shallow (solid line). The four configurations
are H (90,90,0), X (90, 90, 90), T (0, 90, 0) and L (0, 0, 0).



3.4. RESULTS AND CRITICAL REVIEW OF AB INITIO METHODS 67

3.4 Results and critical review of ab initio methods

In this part of the present work we have completed a full quantum chemical ab
initio computation of the oxygen-oxygen collision problem for the three oxy-
gen spin multiplets. Great care was taken in the choice of spin orbital base
functions, the fine tuning of the computational setup of the Gamess quantum
chemistry program and the initial parameters of the individual O2-O2 config-
uration data points. The symmetries inherent in the oxygen-oxygen collision
problem have been identified and exploited to reduce the complexity and the
volume of the calculations and make the project tractable. Additionally, a ro-
bust and eventually largely automated queuing system was developed and put
into place for the distributed processing of the large number of time-consuming
individual computation runs.

After the completion of the raw computations, we have developed methods
and programs to collect and process the individual numerical computation re-
sults, while gracefully handling small gaps in the raw data. Such missing data
resulted from a small number of configuration points, for which the quantum
chemistry computations did not converge and manual intervention and param-
eter tuning did not yield results. By processing the large volumes of raw data,
we have eventually achieved a complete and consistent gaplessly compiled nu-
merical fit of the whole PES for the three spin multiplets, which can in the
future be used, for example, to calculate collision cross section data for O2-O2

collisions or for a fitting and scaling of the PES with experimentally obtained
collision data to improve the best presently known values. We have presented
parts of the PES in figures 3.6 and 3.7.

Since the final results of our PES have eventually turned out to be unsatis-
factory in comparisons with experimentally measured data, as we will explain
further below, we will critically review the ab initio methods, which we have
employed, in the following paragraphs.

Ab initio calculations in general have become reliable tools for calculation
of complex molecular potentials. The precision of such calculated potentials
that can be achieved with modern quantum chemistry programs is generally
high at “higher” temperatures below and above the room temperature range
(in contrast to “low” temperatures in the cryogenic high millikelvin and kelvin
ranges). Problems arising from a finite numerical precision and the limits of
various approximations in the applied quantum chemistry programs are very
intricate, however, and tend to manifest themselves particularly at very low
temperatures and collisional energies. This is an important point and we need
to consider that ultra-cold collisions and bound states, which are able to influ-
ence the collision processes, have energy scales in the order of only 10−7 eV.
This is the same energy scale as the one, on which the particle de Broglie
wavelengths become larger than the immediate short-range Coulomb poten-
tials. A precise evaluation thus necessitates taking into account the effects of
relativistically retarded potentials, which have scales in the order of 100 nm for
typical wavelengths of virtual exchange photons [95]. Thus on these scales, the
inter-particle potentials change due to retardations.– The long-range part, for
example, changes from ∼ r−6 to ∼ r−7. In addition to relativistic potential
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retardations, QED effects become significant on this energy scale. Such effects
are all able to cause additional small modifications to the potentials, possibly
even larger in magnitude than the relativistic retardations alone.

Additionally and more importantly, one needs to realise that ab initio cal-
culations are complex multi-body problems, which can be iteratively approxi-
mated at best, but cannot be solved with analytical precision. Thus quantum
chemistry programs invariably need to neglect higher order effects in order to
make computations on present day computers feasible. The approximations
which are generally made tend to be a reasonable for room-temperature chem-
istry. For ultra-cold collisions, however, minute changes in the PES alter inte-
grable variables like the collision cross sections considerably. Thus, at present,
the best approach to PES calculations for low temperature effects may be to
fine tune the numerically computed PES, and the collision data derived from
them, by means of experimental observations in the low temperature regime in
the same way as scattering theory has originally been used in nuclear physics.

We proceeded with the ab initio calculation project aware of the problems
associated with this approach at very low temperatures, because the present
knowledge about oxygen PES is limited and poor in accuracy, promising great
improvements through the application of modern computational methods. We
need to point out that the virial coefficients computed for our final PES results
(shown in figure 3.8 for the three multiplets) do not match existing experimental
data, which was obtained at higher temperatures [90]. A comparison indicates
that our computed potentials lie significantly too low. Our virial coefficients
show an offset of -80 at T = 300 K compared with experimental data. The
offset is worse for lower and better for higher temperatures. This result may in
part be due to problems with our choice of spin-orbital base functions, which
were a result of a collaboration [87]. We hope, however, that our work will
contribute to an improved picture in the future through an integration of our
results with other theoretical and experimental data in this field.
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Chapter 4

Simulation of Evaporative
Cooling

In this chapter we describe the implementation and application of a computer
program we have developed for the simulation of a trapped particle ensemble
on a microscopic level. While such programs have been developed for specific
applications before [65, 63, 66], we have developed and adapted the basic al-
gorithms to allow them to handle a broad range of similar problems such as
multi-component ensembles, large temperature range in cooling simulations and
large fractional particle loss.

Simulations of evaporative cooling using DSMC algorithms, just as the ex-
perimental realisation, are conducted in a regime of large Knudsen number
(Kn) = λ/L, where λ is the particle mean free path and L is the characteristic
system size (cloud size or trap size). This regime is bounded on the dilute gas
side by the free-particle limit (large Knudsen number), where a lack of particle
interactions precludes realisation of evaporative cooling, and on the high den-
sity side by the hydrodynamic limit (Knudsen number much smaller than 0.1),
where strong interactions localise the thermalisation effects due to the elastic
collisions and thus decrease cooling efficiency. For Knudsen numbers smaller
than 0.1, systems in a discrete particle model are more accurately described by
methods of molecular dynamics and molecular hydrodynamics. For very small
Knudsen numbers, accurate description favours a continuum model using the
Navier-Stokes equations [96].

In the following sections we will first take a general look at numerical simu-
lations of cold particle systems and describe the DSMC method, which we have
used. We then shed light on the trapped particle problem and trap initial states
in section 4.2, before we proceed to the program implementation. In section
4.4, we explore the properties of simulated particle systems in traps before we
proceed to simulations of evaporative cooling.

4.1 Numerical methods

Several approaches to the problem of a numerical description of a physical
many-particle system are possible. A mathematical approach will start out

71
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from the Boltzmann equation using methods of computational fluid dynamics
(CFD). Microscopic physical approaches such as Molecular Dynamics (MD) and
Direct Simulation Monte Carlo (DSMC) have proven to be very successful and
overcome many of the problems associated with the more mathematical ones.

The following sections will discuss different numerical approaches to simu-
lating particle systems by means of computer programs.

4.1.1 Boltzmann Equation approaches

If the temperature is high enough and/or if the density is low enough so that
the particles in an ensemble can be treated as localised wavepackets whose de
Broglie wavelength is small compared with the mean free path, the system can
be modelled using classical kinetic theory [94]. This condition can be expressed
as

~√
2mkBT

(

N

V

) 1
3

� 1, (4.1)

where m is the particle mass, T the temperature, N the number of particles
and V the volume of the gas.

A complete analytical description of the dynamics of a dilute gas in phase
space using single particle distribution functions f(r,v, t) (where r symbolises
the spatial, v the velocity coordinates of phase space {r,v} and t stands for
the time) is given by the Boltzmann equation:

∂

∂t
(nf) + v · ∂

∂r
(nf) + F · ∂

∂v
(nf)

=

∞
∫

−∞

dv1

4π
∫

0

dΩn2 (f∗f∗1 − ff1) vrσ (4.2)

Here n is the phase space number density n = N/dr, F is an external force per
unit mass and values marked with a ∗ symbolise post-collision values.

The Boltzmann equation describes the phase space density changes of com-
ponent f due to collisions with component f1. This entails a collision integral
over the complete angular cross section σ (with relative velocity vr and solid
angle element dΩ), and an integration over the full velocity space of v1.

This equation is justified if the following assumptions (which are not nec-
essarily independent of each other) are met [97]: Microscopic Hamiltonian dy-
namics, a large number of particles in the ensemble (affecting the numerical
tractability), a low gas density allowing the assumption of short range pairwise
interactions, the absence of bound particle states, uncorrelated interparticle
collisions, which bring about irreversibility in the temporal evolution process,
negligible spatial gradients of the distribution function on an atomic scale and
a negligible effect of external forces during the collision. Irreversibility comes in
through the molecular chaos assumption of uncorrelated particle phase space
coordinates. This allows the use of a simple product of single particle states.
Note that particles are only uncorrelated on the incoming side of the particle
trajectories.
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The Boltzmann equation (4.2) as derived from kinetic theory provides a
mathematically precise analytical description of gases. A lot of work has gone
into investigations applying the kinetic theory and the Boltzmann equation to
molecular gases and collisions [98, 99, 100]. However, the major drawback of
the Boltzmann equation approach is that is impossible to solve the equations
analytically for geometrically complex or inhomogeneous cases of gas clouds or
flows. Additionally, various practical problems prevent it from being widely
used in numerical simulations [101]. Most importantly, numerical solutions suf-
fer from the equation’s high dimensionality. Simulations in 6 dimensional phase
space let the number of grid points required grow out of all computationally
reasonable bounds, even for small particle numbers. This applies to molecular
gases particularly, where the dimensions of phase space are increased by the
internal molecular degrees of freedom.

A second fundamental problem associated with the numerical solution of the
Boltzmann equation is the difficulty in finding and setting the upper bounds for
a discrete grid in velocity space. The upper limit is particularly interesting and
important for evaporative cooling processes, so that this shortcoming disqual-
ifies the method for these purposes. Additionally, evaluation of the collision
integral requires a very large number of operations. Schemes to reduce the nu-
merical impact of the collision integral include Monte Carlo sampling techniques
and a focus on the non-equilibrium parts of the collision integral [102,103].

While many of these efforts were successful for specific applications, these
methods do not improve the computational load greatly for the general type of
3D simulation that is the subject of this work.

4.1.2 Molecular Dynamics simulations

Molecular Dynamics (MD) was the first simulation method that approached the
problem from a physical perspective. The mathematical analytical approach
was dropped in favour of a microscopic description using a large number of
individual simulated particles that are traced through time [104]. The method
is fundamentally deterministic, although particles may initially be placed using
probabilistic methods.– Collisions occur when the particle cross-sections over-
lap, and there is no fixed temporal step-size. Computational complexity scales
with the square of the number of simulated particles. This is the method’s great-
est disadvantage and it limits the scope of its applicability, since the number of
particles is determined by the geometry of a system and the gas density.– Even
for small and extremely dilute systems the number of particles is prohibitively
large. This makes the method impractical for our purposes.

MD has been successful in many other areas and it can be parallelised on
super-computers by splitting into smaller sections when a certain overhead for
boundary operations is taken into account.

4.1.3 The Direct Simulation Monte Carlo (DSMC) Method

For the numerical description and simulation of our trapped particle problems
we use a Direct Simulation Monte Carlo (DSMC) technique, which is also often
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called the “Bird” method after its inventor [105,106]. DSMC does is fact stand
for a class of probabilistic simulation methods depending on the dilute gas as-
sumption and the assumption of molecular chaos. This distinguishes DSMC
from molecular dynamics (MD) simulations, which are carried out at high den-
sities and with many restrictions concerning the number of simulated particles,
as explained above.

The assumption of molecular chaos, that is the assumption that collision
impact parameters within the gas are completely isotropic, justifies a simple
hard sphere collision model with isotropic scattering. This does not mean that
anisotropic quantum effects are not taken into account in determining the actual
collision rates. It is only assumed that over the overwhelming number of such
events taking place within a gas cloud, the anisotropic scattering effects average
out, so that the macroscopic experience can be described in terms of a simple
isotropic model [107].

The dilute gas assumption makes the approximation that the physical space
occupied by molecules and atoms, that is the sum of their total physical spher-
ical volumes, is negligible compared with the volume of the trap they are flying
around in. This constitutes part of the ideal gas approximation and it is rea-
sonable in rarefied gas dynamics. Furthermore in dilute gases it is assumed
that potentials are local and collisions binary. This allows the essential DSMC
approximation, which is the uncoupling of particle motion and inter-particle
collisions over a small time step. While the above approximations hold, and
while the uncoupled time step is small compared with the mean collision time,
its actual size does not matter.

One major advantage DSMC methods have over MD methods is the follow-
ing. Because of the uncoupling of collisions and propagation on a microscopic
level and a statistical description, a large number of particles may collectively
be described by a single numerical particle “unit”. While this optimisation al-
lows treatment of macroscopic systems over macroscopic time scales (which is
not numerically feasible using MD on workstation computers), it comes at the
expense of larger fluctuations. This, however, is a small price to pay and the
effect of this is very small when using simulated particles numbers in the order
of N = 1e4 to 1e5.

The particle propagation constitutes the first part of the DSMC procedure.
Trajectories of simulated particles in an external potential (for example within a
quadrupole trap) are computed using a simple Runge-Kutta method, neglecting
particle interactions. Purely harmonic external potentials allow precise analyt-
ical trajectory calculation and in the case of vanishes external potentials, a
simple Euler type algorithm is sufficient for the purpose.

To make good use of the basic DSMC uncoupling principle, the simulation
space is partitioned into cells, each of which contains only a fraction of the total
number of simulated particles. These cells need to be small compared with the
local particle mean free path, since the exact location of atoms within these cells
will be meaningless for the purposes of the collision calculation. A probabilistic
number of collision pairs (see below) will be chosen from a cell at random.
This approximation is bound to yield poor results if there are strong gradients
of macroscopic gas parameters across the cell, since cell spacing marks the
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smallest resolution of macroscopic parameters within the simulation. A good
choice for the cell size, sidelength L, is roughly a third of the mean free path
λ. L ≈ λ/3. In cases with strong macroscopic gradients, the chosen cell size
needs to be smaller. This makes the DSMC method an ideal fit for simulations
of dilute gases at Knudsen numbers larger than (Kn)=0.1. The averaging effect
of choosing collision pairs at random from within a cell, disregarding exact
locations, can be alleviated to a certain extent by cell subsampling for the
collision calculations. In 3D space a cell may be subsampled into 8 subcells.
When using subsampling, collision pairs will be chosen from within a subcell
or, if there is none available, from a neighbouring subcell. This will reduce
the average distance between two randomly chosen collision partners and thus
allow stronger gradients. However, we will later propose a scheme able to handle
gradients in a different way, adjusting cell sizes to suit the problem (See section
4.3.1).

After the propagation part the simulated particles are assigned to the cell-
grid according to the positions they end up at and the collision procedure is
invoked. Thermodynamics requires that for each cell with particle number ni

and FN numerical particle multiplicity (the number of physical particles, which
one simulated particle represents)

Ncoll =
FNni(ni − 1)

2
(4.3)

collision could occur and need to be considered with a probability of

pj =
cr,jσ∆t

Vc
(4.4)

each. Here, cr is the relative velocity between two potential collision partners,
σ is the collision cross section, ∆t is the DSMC uncoupling timestep and Vc

is the cell volume. Carrying out all these possible collisions with a relatively
low probability is very inefficient and it scales badly with particle number. It
is better to consider only a fraction of the collision, which occur with a high
probability. We consider

Ncoll =
FNni(ni − 1)σcr,max∆t

2Vc
(4.5)

collisions, which occur with a high, “rescaled” probability of

pj =
cr, j

cr,max
. (4.6)

It is important here for efficiency to determine the highest possible relative
velocity in each cell and to adjust it regularly to the encountered maximum
values. The ni and the cr,max need to be subindexed for multi-species simula-
tions. For example, for a two-component simulation of particles with different
mass and different inter-component collision cross section, we need to choose
Np,q = np(nq − 1)(σcr,max)p,q/(2Vc) per cell with the appropriate probabil-
ity cr,j/(cr,max)p,q. Problems arising from small species populations simulated
within larger ones are discussed in great detail in [106], but do not concern our
application of this method.
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4.1.4 Random numbers

When numerical algorithms are used, a very important point concerning all
probabilistic methods is often neglected because it does not seem to be very
important.– The source of the randomness used for the simulation. To put
the importance of this into perspective, one must consider that several random
uniform deviates are used for each individual collision operation in the many
particle DSMC simulation. Multiple uniform deviates are needed to obtain
non-uniform probabilistic distributions [108]. This adds up to many millions,
or even billions of random numbers needed for a complete simulation run.

Computers are completely deterministic machines, which makes them pro-
grammable and useful. Randomness and software random number generators
(RNGs) on computers have thus always been problematic and a target of math-
ematical research. On a philosophical side it might even seem to be a paradox
to use computers to generate random numbers. However, today many software
pseudo random number generators (PRNGs) are available. These are iterative
programs, ideally “seeded” by a piece of true randomness, which are used to
churn out “random” numbers of flat probability distribution and with extremely
long repetition cycles. After passing rigorous statistical tests for randomness
and periodicity, many such algorithms are deemed good enough for all but the
most security sensitive areas, such as cryptography. It is interesting to note
that cryptographic stream ciphers, like for example the widely used “RC4”, are
nothing but sophisticated purpose-built PRNG algorithms. The RC4 crypto-
graphic algorithm in its deceptive simplicity can be stated in very few lines of
code [109]. However, a lot of good research has suffered (and it still does) from
the effects of bad random numbers. The authors of “Numerical Recipes” [92]
even claim that library shelves would be “considerably lighter” if such flawed
research was to be removed from them.

Several different approaches have led to better random number genera-
tion. Computers have been used to collect truly random event data such as
keystroke and mouse motion timings and network packet arrival times (these
sources are used for example by the Linux operating system built-in kernel de-
vice /dev/random). In general the rate at which this true randomness can be
collected in this way is very small, in the order of several bytes per minute.
Static noise on open microphone and sound port connectors has also been used
to generate random numbers after carefully removing all correlations and peri-
odicity. This allows an increased collection rate. More advanced applications
with large demand for true randomness have purpose-built computer chips col-
lecting randomness from quantum noise on integrated circuit devices.

All these methods may be used to generate truly random cryptographic
keys, or in the context of computer simulations to “seed” a PRNG. That is,
to put the PRNG into an initial random starting state within its deterministic
(long) cycle. A continuously re-seeded PRNG (the re-seeding rate depends
on the rate the system can gather randomness) is available on a system level
through the Linux operating system device /dev/urandom, which will provide
arbitrary amounts of random numbers at great speed.

In our evaporative cooling simulation the requirements for random numbers



4.2. COOLING ATOMS AND MOLECULES 77

are not as high as in other areas such as the security sector.– For our pur-
poses it is not important that it is impossible to reproduce a random number
stream. On the contrary, it simplifies software debugging efforts over multiple
numerical simulation re-runs if they are based on a reproducible stream of ran-
dom numbers. This can be achieved by seeding the PRNG function chosen for
the program at the time with the same initial seed. To check the validity of
our numerical results, however, we have also used different RNGs from time to
time. Random numbers in the context of our simulations are deemed “good
enough”, when different PRNGs (over several runs using different seeds for
the same PRNG) reproduce the same results for otherwise identical simulation
runs. A particularly fast and simple RNG proved to be the ran2() generator,
described in [92]. We also found that the “rand()” function from the linux stan-
dard library works well for us, although standard library rand() functions have
acquired a bad reputation due to broken implementations of the algorithm on
some compilers and architectures.

4.2 Cooling atoms and molecules

In the previous section we outlined the general methods that can be used to
approach a many particle problem. Methods like DSMC constitute what can
be called the “engine” of the program, doing the hard work. While this is the
most important part of a simulation, there are other important aspects that
need to be resolved. For the simulation of atoms and molecules in a magnetic
trap it is important to find a correct starting point.

Since we are interested in manipulations of trapped ensembles, we start out
from a trap filled with a specific number of particles in thermal equilibrium,
as one experimentally obtains by optical cooling or by thermalisation with a
cold buffer gas. The way such a randomly sampled initial population can be
generated will be described in the following section.

4.2.1 Initial thermal distribution in a trap

A numerical simulation of atoms and molecules in a specific magnetic trap ge-
ometry needs to start out from a physically correct initial thermal distribution.
This is described by the Maxwell-Boltzmann equation.

f(r,p) dr dp = e
−E(r,p)

kBT dr dp, (4.7)

where for a harmonic trap geometry E(r,p) has the form

E(r,p) =
3
∑

i=1

(

p2
i

2m
+

1

2
mω2

i x
2
i

)

. (4.8)

For static magnetic quadrupole trap geometries (linear traps), E(r,p) is

E(r,p) =
3
∑

i=1

p2
i

2m
+ gF MF µB

√

√

√

√

3
∑

i=1

|∇Bi|2x2
i , (4.9)
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where the |∇Bi| are the constant linear field gradients in the three spatial
dimensions i. gF and Bohr’s magneton µB characterise the strength of the
magnetic field interaction of the trapped atomic or molecular spin projection
with quantum number MF .

Assuming a distribution independent of the spatial direction in a spherically
symmetrical trap, using the transformation into spherical coordinates dr →
r2 sin θ dθ dφ dr, the distribution functions f(r,p) become

∫

f(r,p) dr dp =

∫

16π2r2p2f(r, p) dr dp (4.10)

Using the normalisation condition
∫

f(r,p) dr dp = 1, (4.11)

the distribution function for particles in a spherical harmonic trap with trap
frequency ω becomes:

f(r, p) =
ω3p2r2

π(kBT )3
e

p2/m+mr2ω2

kBT . (4.12)

In a spherically symmetric magnetic quadrupole trap, the normalised distribu-
tion function is

f(r, p) =
c3p2r2

2m3/2
√

2π(kBT )9/2
e
− p2+2mcr

2mkBT , (4.13)

where we have substituted c = gF MF µB |∇B| for the strength of the linear
trapping potential, the trapping force (units [N]).
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Figure 4.1: Radial spatial particle distribution in a spherically symmetrical
harmonic trap. Note that r is not scaled to any specific trap strength or tem-
perature.

For the harmonic trapping potential, both the momentum and spatial dis-
tributions have Gaussian shape. (Shown in Fig. 4.1 for the spatial particle
distribution function p(r) in a harmonic trapping potential.) This can be de-
rived from the above distribution functions by integrating over the whole range
of one of the variables, r or p, and dividing the result by the appropriate scaling
factor for the phase space volume element.
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4.2.2 Peak densities

This leads to a temperature dependent peak density at the trap centre of

n0(T ) = N

(

m

2πkBT

) 3
2

ω3. (4.14)

Assuming an arbitrary trap with trapping frequencies ωx, ωy, ωz, evaluation of
the integrals shows that the individual trap frequencies become simple factors
in the above expression for the general T -dependent peak density at the trap
centre:

n0(T ) = N

(

m

2πkBT

) 3
2

ωxωyωz. (4.15)

An analytical expression for the peak trap density is useful since the peak
trap density also characterises the peak phase space density n0(T )λ3

dB , which
is of great interest for evaporative cooling efficiency and eventual transition to
BEC. λdB is the temperature dependent de Broglie wavelength of the trapped
particles. The phase space density can be understood as a measure of the
number of particles in the volume defined by the de Broglie wavelength. Phase
space density values above 1 indicate a significant wavefunction overlap. The
critical phase space density, at which the BEC formation process leads to a
macroscopic ground state population is 2.612.

For the linear quadrupole trapping potential, the spatial particle distribu-
tion function p(r) has an exponential shape and thus it is strongly peaked in the
central region. We integrate equation (4.13) over the whole momentum range
and scale by the r volume element:

p(r) =
1

4πr2

∫ ∞

∞
f(r, p) dp =

c3

8π(kBT )3
e
− c r

kBT (4.16)
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Figure 4.2: Radial spatial particle distribution in an isotropic linear trap. Note
that r is not scaled to any specific trap strength or temperature.

The strongly peaked nature of this spatial distribution function for the linear
trap case (shown in Fig. 4.2) caused a lot of problems in our initial attempts to
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simulate such an ensemble using an unmodified Bird DSMC algorithm (compare
section 4.1.3).

The peak density in a symmetrical linear trap is

n0(T ) = N
1

8π

(

c

kBT

)3

, (4.17)

where c is the gradient of the confinement as known from the above equations.
This result proved difficult to abstract to a general trap with three independent
gradients, because the normalisation factor cannot easily be calculated analyt-
ically. However, it can be shown that doubling the linear confinement ci in
one spatial dimension will double the central peak density. Doubling all three
parameters (corresponding to doubling c in eq. (4.17)) increases the central
peak density by a factor of 8. Note that the strongly peaked spatial particle
distribution will in practice be smoothed out to a small extent due to the effects
of collisions, discretisation and finite sampling.

We can now easily work out for isotropic traps, how strong the trap con-
finements in terms of c and ω need to be for equal peak phase space densities
at equal total population and temperatures in the two types of traps. Equating
(4.14) and (4.17) at equal N and T , we get

ω =

√

π1/3

2mkBT
c. (4.18)

This shows that as the forced cooling proceeds, the peak density development
in a quadrupole trap can only be matched by a progressive compression (in-
creasing of ω) in a corresponding harmonic trap. Without looking at the zero
magnetic field problem and the corresponding Majorana spin flip particle loss
at the centre of the quadrupole trap, this would give the quadrupole trap a
natural advantage. This also allows decreasing the magnetic field gradient with
decreasing temperatures in situations, where the compressing effect of the quad-
rupole trap during cooling runs is not needed. It may also reduce to a certain
extent the problem of increased inelastic collision rates at large magnetic field
magnitudes, which we have outlined in section 2.2.4. The main problem for
evaporative cooling, however, is still the necessity to reach low trap initial tem-
peratures in a way not depending on magnetic traps and evaporation due to
the large inelastic collision rates at high T and |B|.

4.2.3 Collision rates

It is clear from figures 4.1 and 4.2 that the mean densities for distributions
with the same peak density differ. In a quadrupole trap the mean density is
smaller compared with the harmonic trap, where the mean density is n0/(2

3/2),
resulting in a smaller thermalisation rate. The mean collision rate ν̄ is defined
as

ν̄(T ) = n̄(r, T )σ(T )v̄r(T ), (4.19)

where n is the density, σ the collision cross section and v̄r the mean relative
velocity between two trapped particles. Kinetic theory yields v̄r =

√
2 v̄a,
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where v̄a is the mean particle velocity, which depends on the temperature of an
equilibrium Maxwell-Boltzmann distribution with particle mass m as follows.

v̄a =

√

8kBT

πm
(4.20)

The mean density in a simulated ensemble can be easily calculated using the
discrete summation equivalent of its definition

n̄(r) =

∫

n2(r)dr
∫

n(r)dr
=

∫

n2(r)dr

N
(4.21)

4.2.4 Random sampling

For numerical simulations using Monte Carlo methods, many random samples
of particles with characteristic distribution functions as described above are
needed, while additionally the directions of the r and v vectors need to be
randomly sampled over 4π solid angle. In order to do this, there are at least
two different methods that can be utilised.

• Rejection method

• Transformation method

Both methods have their specific advantages and shortcomings. We will de-
scribe them in more detail below and look at them individually after finding
the appropriate high energy boundaries.

4.2.5 Maximum particle energy in a trap

In an experimental trap, the maximum particle energy is limited by the trap
cutoff size. This can either be the physical container wall or a virtual line, for
example, where a state transition of the trapped particles becomes resonant
with a radio frequency field flipping the trapped particles into an untrapped
state.

In the creation of an initial distribution, the maximum particle energy needs
to be known in order to make the sampling procedures as efficient as possible.
In the rejection procedure, the maximum radial spatial position of a trapped
particle and the maximum trap energy mark the limits of the random sam-
pling range. In the transformation procedure these values are the limits of the
transformation tables.

As in equation (4.9), the total energy of a particle of massm in an anisotropic
linear trap can be written as

E =
1

2
m

3
∑

i=1

v2
i +

√

√

√

√

3
∑

i=1

c2ix
2
i , (4.22)

where the ci characterise the linear gradients of potential energy in the three
trap dimensions. For a magnetic dipole trap, these ci factors depend on the
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magnetic dipole interaction of the para-magnetic atomic or molecular particle
with the magnetic field.

ci = gf Mf µB |∇Bi|, (4.23)

where gF is the Lande factor, mf the magnetic quantum number and µB Bohr’s
magneton. The magnetic quantum number, the projection of the particle’s
magnetic moment into the direction of the trap magnetic field, also determines
the trap state of the concerned particle. A flip of the particle spin and its
magnetic moment can mark the transition into an anti-trapped state, which
will eventually lead to the loss of the particle from the trap.

In a spherically symmetric trap the particle energy (4.22) becomes

E =
1

2
mv2

r +
L2

2mr2
+ crr, (4.24)

where cr = ci is the isotropic linear radial gradient of the trap potential energy,

r =
√

∑

x2
i and vr is the radial particle velocity. A trapped particle with the

highest permitted energy will orbit the trap centre with constant maximum
angular momentum L = mr×v at the maximum radius r = rmax with a radial
velocity vr = 0. Calculation of dE/dr = 0 yields

crr =
L2

mr2
(4.25)

for circular orbits. Substitution into (4.24) leads to the following expression for
the energy of a circular trap orbit

E =
3L2

2mr2
. (4.26)

A comparison of (4.25) with crr = crrmax = Epot,max and (4.26) shows that the
maximum trapped particle energy is given by

Emax =
3

2
crrmax =

3

2
Epot,max. (4.27)

The same procedure for a harmonic trapping potential V = 1
2mω

2r2 yields the
relationship Emax = 2Epot,max.

The maximum velocity for a trapped particle can also be derived as follows.
Regardless of its location within the trapping region, any particle will fall out of
the trap within the next collision-free trap oscillation time if its velocity exceeds

vmax =

√

2Epot,max

m
. (4.28)

This is intuitively clear, since only a particle at the trap centre travelling out-
wards at vmax will reach the border of the trapping region at v = 0 (and then
fall back inwards). In a harmonic trap, where Emax = 2Epot,max, a particle
with vmax will orbit the trap at radius rmax with maximum allowed angular
momentum. In a linear trap, the kinetic energy of an orbiting particle at radius
rmax is only Epot,max/2. Thus such orbits have smaller maximum velocities by
a factor of 1/

√
2.
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4.2.6 Rejection method

As we have seen, software makes it fast and simple to generate large numbers
of uniform random deviates over any interval. In many situations, however, we
want to obtain random deviates not from a uniform, but from within a specific
probability distribution. This can be achieved by using more than one uniform
deviate to generate a single non-uniform deviate in what is called the rejection
method.

The method in its simplest form uses an algorithm as follows: Pick a sample
at a randomly chosen position x on the appropriate interval, if a second random
number, chosen from an interval between zero and the distribution function
peak, is smaller than the sampled distribution function p(x) at x. Reject the
sample and try again, if the second random number is larger than p(x).

It is obvious, that this method is extremely inefficient for strongly peaked
distribution functions on large intervals, because in this case the two-dimensional
“reject” area described by the two orthogonal random numbers greatly exceeds
the “accept” area. The rejection area can be reduced by introducing an ana-
lytically integrable function f(x), which is larger than the distribution function
p(x) for all x. The sample position x is then not chosen directly, but from the
range of the integral

∫

f(x)dx on the appropriate x range, and x is obtained
by inversion of the integral function. The second random number is then taken
from the interval between zero and f(x), rejecting the whole sample if it lies in
the gap between f(x) and p(x) [92].

This method is particularly well suited for deviates of distribution func-
tions, which can be approximated by an analytically integrable function. Inte-
grable distribution functions are more easily sampled using the transformation
method, which we will describe below.

4.2.7 Transformation method

A more efficient method to generate a random deviate for a known probability
distribution is the transformation method. We assume a uniform probability
distribution p(x), of which we can easily get any number of deviates. If we
now take any function y(x) of the uniform deviates generated to obtain a y-
distribution of p(y), the probability distribution becomes

p(y) = p(x)

∣

∣

∣

∣

dx

dy

∣

∣

∣

∣

= p(x)f(y). (4.29)

x is uniformly distributed, thus it fulfills

p(x) =

{

1 : 0 < x < 1
0 : otherwise

(4.30)

and we can write

p(y) = f(y) =
dx

dy
, (4.31)

which has the solution x = F (y), obtained by simple integration. A simple vari-
able inversion takes us to the function which turns our easily obtained uniform
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deviate into the desired non-uniform deviate:

y(x) = F−1(x). (4.32)

In many situations it is easy to obtain the inverted function of y = F−1(x)
analytically. In situations like ours, where the inversion is not possible analyt-
ically, it is still possible to use the inversion method by means of a numerical
inversion. (Arbitrarily long) evenly spaced lists ranging from the minimum to
the maximum of x = F (y) and of the corresponding values of y are initialised.
x is then chosen from a uniform distribution over its complete used range, the
corresponding value of x is found in the x-list and the appropriate y value can
subsequently be obtained from the parallel y-list at the same position.

The transformation method can also be extended to non-uniform distri-
butions with multiple variables with little difficulty. This, however, was not
necessary when the method was applied to the trapped particle problem.

Application to the trapped ensemble problem

The transformation method is ideally suited for initial state generation in the
trapped ensemble problem because the distribution function equation (4.7) al-
lows separation into a product of single variable distributions, each dependent
on either space or momentum coordinate for the harmonic (equation 4.12) and
the linear (equation 4.13) trapping fields, which we are interested in. For ex-
ample, the factor f(v)dv = v2dv exp(−mv2/(2kBT )) in the product of single
variable distribution functions for trapped particles can formally be integrated
yielding

x = F (v) =

∫

f(v)dv =

√

π

2
Erf





√

mv2

2kBT





(

kBT

m

)−3/2

− vkBT

m
e
− mv2

2kBT .

(4.33)
This function cannot be inverted easily and we have resorted to numerical tables
and interpolation, which can be done very quickly. Thus sampling from f(v) is
done by taking a uniform random deviate on the interval from zero to xmax =
F (vmax) and subsequent numerical inversion to find the v sample. Similarly,
samples for r are found using the appropriate function x = F (r) =

∫

f(r)dr
(for anisotropic traps the directional components of the r samples can simply
be scaled appropriately as a last step). Random directions (θ, φ) for the vector
r and v can be found by inverting a uniform random deviate of F (θ) = − cos(θ)
for θ and by taking a simple uniform random deviate on the interval [0, 2π] for
φ.

The quality of the initial trap distributions resulting from this method is
investigated in section 4.4.1 by propagating such a trap initial state for a long
time using our DSMC simulation algorithm. Without natural evaporation (sup-
pressed by using a very deep trap) and without inelastic collisions, initial states
of good quality will have constant temperature and energy over arbitrarily long
times.
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4.2.8 Statistical fluctuations

Finite sample sizes, as we have used in all of our numerical simulations, give rise
to statistical fluctuations in the system parameters and variables we measure.
Figure 4.3 shows an example of a velocity histogram, randomly sampled for
N = 2000 133Cs atoms using the transformation method for the linear trap
case at a low temperature of T = 1 µK. With 2000 sampled particles, the
outcome is very close to the target temperature. – A numerical evaluation
of the sample shown in the figure yields T = πmv̄2/(8kB) = 1.01 µK for the
sample. In general, the central limit theorem causes the sample mean value to
converge to the absolute central value with increasing sample size.
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Figure 4.3: Velocity histogram of N = 2000 trapped particles at T = 1 µK.
Statistical fluctuations, which are proportional to N−1/2, of the particle number
in the 200 histogram sample boxes are evident. The solid line shows the the-
oretically expected Maxwell-Boltzmann velocity distribution for the sampled
case.

v̄sample = v̄ ± σ√
N
, (4.34)

where v̄ is the central limit and σ the standard deviation of the velocity samples
in the distribution function.

Fluctuations in particle number in individual histogram boxes is described
in terms of a binomial distribution function [110]

WN
p (m) =

(

N

m

)

pmqN−m (m = 0, 1, 2, . . . , N), (4.35)

describing the probability of getting m particles into a specific histogram box,
when N samples are taken. p is the probability of a single sample being in
the specific box and q = 1 − p. For large N this binomial distribution can
be approximated by a normal distribution with a standard deviation σhist =
√

pq/N .
Thus for meaningful numerical results, an appropriately large number of

samples is necessary. We have usually used simulated (multi)particle numbers
in the order of 10000 particles.
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4.3 The bird simulation program

In the following sections we describe our adaptions and improvements to the
numerical DSMC simulation method and outline its implementation details and
we will discuss the program structure.

4.3.1 Adaptation of DSMC to evaporative cooling

The evaporative cooling process is very efficient in reducing the ensemble tem-
perature. However, this goes in parallel with an enormous loss of particles,
which by itself would cause the Bird DSMC method to fail before the particle
number decreases by only one order of magnitude.

Particle “Cloning”

In order to scale the simulation through many orders of magnitude, the amount
of simulated particles has to be kept within a comparatively narrow tolerable
range. This can be done by an occasional doubling of the simulated particles,
as soon as their total number has decreased to 50% of the initial value. At the
same time the simulated particle multiplicity number is halved in order to keep
the simulation in a consistent state.

This process of “cloning” simulated particles has been applied by Dal-
ibard [111]. The “cloned” particle is placed into the simulated trap at a po-
sition mirroring the original particle. This method causes grave problems in
anisotropic traps and asymmetrical settings, and it does not conserve angular
momentum. In the present work we propose a novel more straight forward so-
lution, simply putting the clone at the same place as the original particle. This
method originates from the idea of a simulated particle representing a large
number of corresponding real particles. It does not cause an unphysical in-
crease of the collision rate because the collision probability between particles at
identical positions and velocities vanishes. Collisions between two such “cloned
twins” will only happen subsequently, once they have drifted apart due to at
least one of the two particles undergoing a collision with a third particle. Only
then will the two twins have a non-zero relative velocity. This is an ideal and
consistent extension of the simulation concept of numerical particles with large
multiplicity numbers.

Recursive subpartitioning

The cell based DSMC algorithm allows flexible handling of the cellsizes and
shapes. Customised cell designs have been used for many different problems,
where the cell geometries had to be fitted to suit system boundaries like for
example the surface shape of a shuttle orbiter in simulations of atmospheric
re-entry aerodynamics [106].

In simulations of particle traps however, one faces a completely different
problem: The real issue is not the smooth approximation of a surface, since
the trapped particles are freely floating in space, held by the magnetic and
optical trapping fields. The problem in this application is the large density
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inhomogeneity from the relatively dense trap centre population peak to the
extremely dilute outer regions, the vacuum, where hardly any particles can
be found. The problem is worsened by the evaporative cooling process, which
decreases the temperature and densities by orders of magnitude. If the cells are
not adapted to the changing environment, eventually all particles will reside in
the corners of the central eight cells and the simulation will produce questionable
or invalid results.

While one author [63] has dealt with the problem by continuously shrinking
the cell grid with decreasing cloud size, this approach was unsatisfactory for
our simulations of particles trapped in a quadrupole trap, where the probabil-
ity distribution is sharply peaked (section 4.2.1). In the present work we have
developed a novel recursive algorithm, which can handle the cellsize problem
much more flexibly. Starting from a relatively coarse static grid of 1000 cells,
fitted to the initial particle distribution, the program will subpartition the cells
as needed as the simulation progresses. This method is significantly faster than
a complete “regridding” and it makes simulations of quadrupole traps possible.
When the program detects cells exceeding a specified population number, the
cell is split into eight subcells, which are linked into the linked cell list. The par-
ticles contained in the top-level cell are distributed into the appropriate subcells
and all global and all cell-specific parameters are adjusted or distributed appro-
priately. The algorithm developed for this purpose almost entirely automates
the gridding problem.

It has later been found that similar subpartitioning algorithms using 3D cell
octants are employed in accelerated graphics for computer games [112].

Figure 4.4: Recursive DSMC simulation cell subpartitioning adapted to cope
with strongly peaked spatial particle distributions in linear trapping potentials,
as shown in a) 2D and b) 3D. The trap center is to the bottom right of the two
figures. The figures only show one quadrant, i.e. one eighth, of the available
space.
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4.3.2 Program structure

The bird simulation program has been designed to be as modular and fast as
possible, and it uses C++ object oriented programming. Relevant functions
are encapsulated in classes, which are structurally and logically independent
units with strict interfaces. Among several other classes, there is a particle
class called “Atom”, a “Cell” and a “Trap” class. These classes encapsulate
and hide their data and allow access by class member functions and strictly
defined “public” interfaces only.

Simulated particles are organised as a list of linked instances of the “Atom”
object class. In order to allow fast assignments of particles to cells according to
their spatial positions, and in order to make random access to particles within
individual cells very fast, we use more linked lists of these object instances. Most
simulation operations then become simple list operations, adjusting pointers
appropriately. Random access amounts to a traversal of a linked list by a
random number of elements.

Figure 4.5 shows a simplified example of an initial linked atom list (top
rows). A subset of the atom object instances is positioned within a specific
spatial cell (linked list shown in the bottom row), represented by a Cell ob-
ject. Atom objects within this particular Cell are linked into a list by means
of a “nextAtomInCell” pointer in the Atom particle class. In the presented
example the initial particle object is being pointed to by the Cell pointer
“firstAtomInCell”.

With this structural design, removal of random elements, the cloning proce-
dure and the DSMC-type random collision events between atoms within indi-
vidual cells have a minimal administrative overhead. Thus the program scales
up well and allows tracking of a large number of such numerical particle “Atom”
objects, as well as a flexible recursive “Cell” partitioning concept, which we have
outlined in the previous section.

4.3.3 Collision cross sections

The most important data for any simulation of evaporative cooling are the col-
lision cross sections of the considered particles. The collision cross sections de-
termine the collision rates at the ensemble temperature and thus the response of
the ensemble to perturbations, like the removal of fast moving (“hot”) particles.
In a trap, the relation between elastic and inelastic collision rates determines
whether an ensemble may efficiently be cooled using particle evaporation or not.
If the rethermalisation time characterised by the elastic collision rate (among
other ensemble properties) is too small, no trapped particles will be left in the
trap by the time the ensemble would have undergone sufficient cooling.

While a great deal of information about collision cross sections for the
more simple monatomic gases like for example the alkali metals and helium is
known [113,37], collision data for molecules at low temperatures is still scarce.
This is the reason why an effort was made to improve the data available for the
computation of oxygen-oxygen collision cross sections (Chapter 3). At low tem-
peratures, the collision cross sections of atomic and molecular gases in particu-
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Figure 4.5: Simplified example of linked object lists within the bird simulation
DSMC simulation program. The example shows the assignment of a (random)
subset of “Atom” objects to one of the linked “Cell” objects. Assignment
to this particular cell is achieved by linking the “Atom” objects by means
of a nextInCell pointer. This “high-level” list (highlighted by bold lines) is
adjusted according to present particle positions after every time step. The list
is terminated by a NULL pointer.

lar, are subject to significant quantum effects [31, 49, 43], the full computation
of which is difficult for even the most simple particles.

Thus several approximative classical models have been used within DSMC
simulations to describe the dependence of the elastic and inelastic collision cross
sections σ on ensemble temperature [106].

• Hard sphere model

• Variable hard sphere model

• Variable soft sphere model

• Maxwell model

• Generalised hard sphere model

The basic classical scattering theory, which these models are based upon,
has been outlined in section 2.1.1. Most of the models are well suited for room
temperature or higher T , at which DSMC simulations have been applied to
problems of gas flow and super sonic shock waves [106].

It has been found that variations in collision cross section magnitudes ex-
hibit more pronounced effects on the outcome of numerical simulations than
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the omission of a precise physical representation of anisotropic directional scat-
tering effects. Particularly this holds true for largely isotropic ensembles, like
gases in spherically or cylindrically symmetrical traps, which are generally used
for evaporative cooling. The simple explanation to this observation is the fact
that molecular chaos sufficiently randomises directional events, resulting in an
isotropic macroscopic picture. Thus a phenomenological approach to simula-
tions of gas ensembles is practical, separating the quantum mechanical effects,
which determine the collision properties, from the classical simulation of the
large macroscopic ensemble.

In our simulations we use tabulated collision data, employing the simple
hard sphere collision model with isotropic scattering. At all encountered colli-
sion energies and ensemble temperatures, table lookups will individually provide
the best known compiled data for an otherwise classical numerical simulation.

Chromium

During the development of our DSMC simulation program we have done simu-
lations for chromium, which has a large magnetic moment of µ = 6µB due to
its large spin of S = 3. It can thus easily be trapped in magnetic traps [114].
However, chromium exhibits a large inelastic collision cross section, which in-
creases with decreasing temperature as shown in figure 4.6 and limits the low
temperatures that can be achieved with evaporative cooling. We have thus
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Figure 4.6: 52Cr collision data obtained by J. Doyle et. al. [115]. Interpolation
between the approximations (dashed line) was used in numerical simulations.

concentrated on simulations of caesium and oxygen ensembles for the purposes
of this work and we show the chromium collision data as an example, where
efficient evaporative cooling to temperatures below approximately 10 mK is
unlikely to be achieved.
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Caesium

133Cs has an s-wave scattering length of a = 1.1906 · 10−7 m [116, 66] and can
be magnetically trapped in its |F = 3,mF = −3〉 state, which has a g factor of
g = −1/4. The temperature dependence of the collision cross section at very
low temperatures can be approximated [66] as

σ(T ) =
8πa2

1 + k2a2
, (4.36)

where k is the de Broglie wavenumber k = mv/~, and v =
√

8kBT/(πm) is
the temperature dependent mean particle velocity. The inelastic collision loss
coefficient K2 (equation 2.50) can be approximated by K2 = K0

2/(1.017 +αT ),
with K0

2 = 23.608 · 10−19 m3s−1 and α = 5.3 · 106 K−1.

As expressed in the model above, the elastic collision cross section for Cae-
sium exhibits strong gradients with temperature. While it generally increases
with decreasing temperature, which is beneficial for runaway evaporative cool-
ing, the thermal gradient of the collision cross section slows down thermalisa-
tion within the trapped ensemble from an average of approximately 2.7 collision
times to 10.7 collision times. This has proved to be crippling to the efficiency of
the evaporative cooling process in the presence of high inelastic loss rates [117].

Oxygen

Oxygen molecules have a magnetic moment of µ = 2µB, with a g factor of 2 and
magnetic trapping can possibly be achieved in the mJ=1 state (compare with
figure 3.1 on page 49). Figure 4.7 shows the O2-O2 collision data computed by
Bohn and Avdeenkov in [31] for vanishing magnetic field strengths. Thermally
averaged curves are obtained by integrating over the appropriate energy distri-
bution function for each temperature (averaged data is shown in dashed lines):

K̄(T ) =

√

8kBT

πm

1

(kBT )2

∫ ∞

0
Eσ(E)e−E/kbT dE (4.37)

Such thermally averaged data is useful in numerical simulations of particle
ensembles, assuming that the ensemble is close to thermal equilibrium at all
times. This allows the use of collision data, which has a simple dependence on
the average ensemble temperature.

4.4 Thermalisation

In this section we will present the results of simulation runs involving thermal-
isation. These simulations serve as important test cases and as comparisons
with previous work in the literature. In some of the simulations, we use the
parameters for magnetically trapped Caesium 133Cs, as this is an isotope of
interest for Bose-Einstein condensation.
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Figure 4.7: O2-O2 collision data calculated by Bohn/Avdeenkov [31]. The
dashed lines are thermal averages calculated according to equation (4.37).

4.4.1 Initial state quality

In order to verify the quality of the initial trap distributions generated using
the transformation algorithm, states ware propagated in their appropriate trap
geometries, setting the inelastic collision cross section to zero. Cloud sizes,
peak and mean densities and the elastic collision rate then needed to remain
constant for long propagation times. This was done as a consistency check for all
problems we have done simulation runs for. Such runs also allowed us to verify
energy conservation in the trap, which is easily maintained at the microscopic
collision level, but which can be violated due to small numerical errors within
the particle propagation code, accumulating over a large number of time steps.

For particle propagation in the harmonic trapping potential, we use the an-
alytical harmonic solution in the three linearly independent spatial directions.
Consequently, energy conservation is fully observed in this case. In the quad-
rupole trapping potential, we use a fourth order numerical Runge-Kutta solver,
which is very accurate. Over the course of a long simulation run we will lose not
more than about half of a percent of the particle energy due to accumulating
numerical inaccuracies.

4.4.2 Cross dimensional thermalisation in a harmonic trap

Wu et. al. [63] have investigated thermalisation and evaporative cooling of
133Cs before, using a different simulation program, which was not available to
us for comparison. Thus we compare our simulation results to data published
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in [63, 65]. Caesium 133Cs at T = 30 µK is trapped in a harmonic trap with
trap oscillation frequencies (ωx, ωy, ωz) = 2π (16.2, 17.6, 9.8) Hz. The mean
number density is 5·1015 m3 and the collision cross section is kept constant at
1.5·10−16 m2. We achieve this trap number density with 104 simulated particles
representing a trapped ensemble of 5·107 caesium atoms. The trapped region
was chosen large enough so that the potential depth was around ηT = 30 mK.
This was large enough to achieve complete confinement without any particle
loss due to natural evaporation.

The resulting development of the temperatures in the three linearly inde-
pendent directions, after doubling the x temperature by multiplying particle x
positions and velocities by

√
2, shows small fluctuations with the respective spa-

tial oscillation frequencies and a thermalisation mediated by elastic collisions.
The thermalisation is described by a decaying exponential function with time
constant τ = 2.4 tc, where tc is the initial mean particle collision time. This is
in good agreement with [63], where a time constant of τ = 2.5 tc was measured.

Figure 4.8: Cross dimensional thermalisation of 133Cs at T = 30 µK in a har-
monic trap. Time is scaled in units of the initial mean collision time (tc = 16 s).
Temperature in x was doubled at t = 0. Thermalisation fitted to exponential
function with τ = 2.4 tc. (Upper dashed curve).

4.4.3 Ergodicity in linear traps

While harmonic traps are non-ergodic by nature, with cross-dimensional mixing
only occurring due to elastic collisions, linear (quadrupole type) traps exhibit a
certain inherent ergodicity due to the potential coupling the spatial directions.
In this type of trap, orbits have different periods and thus quickly dephase
against each other after an external perturbation. Thus directional heating
can be achieved experimentally by a rapid small shift of the trap centre. In
our simulations, we simply double the particle kinetic energy in one spatial
direction by multiplying the appropriate velocity component by

√
2. In order
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to demonstrate the ergodic effects in quadrupole traps, we did three different
simulations, in all of which we disabled collisions by setting the collision cross
sections to zero.

Figure 4.9: Collisionsless ergodic mixing in a linear trap. (5000 simulated
particles at T = 100 mK, representing an ensemble ofN = 5e7 oxygen molecules;
x blue, y green, z red lines.) A) spherical linear trap. After initial dephasing
of the instantaneous

√
2 directional velocity increase in x, a moderate amount

of cross dimensional mixing occurs. After 0.2 seconds, the system evolution is
nonergodic. B) Ergodic mixing occurs between the two radial directions in a
quadrupole trap. C) Mixing is not observed in a quadrupole trap after heating
in the axial direction.

Increasing one velocity component vi by
√

2 in a spherical linear trap shows
that after an initial period of rapid dephasing, which is expected since the
particle positions in the nonadiabatic heating step are kept constant, the trap
appears to evolve largely nonergodic, maintaining different temperatures along
its three axes after a moderate amount of initial cross dimensional mixing.
(Figure 4.9 A).) A similar result has been found in [118].

One dimensional heating along one of the weakly confined directions in a
realistic quadrupole trap shows that complete mixing occurs between the two
radial directions, while the axial direction is unaffected. (Figure 4.9 B).)

Heating in the strongly confined z direction of a realistic quadrupole trap
shows a nonergodic evolution. No measurable cross dimensional mixing occurs.
(Figure 4.9 C).)
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It can be concluded that linear traps are nonergodic to the same extent as
harmonic traps. Complete mixing can only be achieved by means of elastic
collisions. The ergodic mixing in the radial directions of a quadrupole trap will
be of little advantage in evaporative cooling, since gravity sag will maintain the
axial symmetry of the system with little or no mixing occurring between (x,y)
and axial z directions.

4.4.4 Cross dimensional thermalisation in a linear trap

A cross dimensional thermalisation simulation run in the nonergodic case of
a realistic quadrupole trap with heating in the axial (z) direction gave results
qualitatively equivalent to the ones shown in figure 4.8. With a collision time
of 4 s, the temperature fit of a 20 s run yielded a time constant of τ = 2.72 tc
for the thermalisation. This shows that within a small margin of error, which
may be due to the differences in central peak densities and the cell mapping
algorithm used in the DSMC simulation, we can reproduce the literature results
obtained for harmonic traps in quadrupole traps.

4.5 Evaporative cooling

Rapid thermalisation is crucial for evaporative cooling strategies. However, in
simulations of trap thermalisation, the phase space density remains constant
and nothing tangible is gained in terms of the ultimate goal of reaching very
low temperatures. The same applies to adiabatic compression and relaxation
of the trap. While these processes change the temperatures and densities, the
phase space density will remain constant or decrease due to a lack of com-
plete adiabaticity and consequent heating effects. In the following sections we
will look at evaporation processes, which will increase the phase space density,
removing energy from the trapped ensemble.

4.5.1 Natural evaporation and forced cooling

Natural evaporation occurs, when the trap depth is finite. In this situation
particularly fast particles, which appear with low probabilities in the “tail” of a
Maxwell-Boltzmann thermal distribution, can escape from the trap by crossing
a spatial cut-off limit. Consequently, the ensemble loses energy and the system
rethermalises towards a new equilibrium equilibrium state. This means that
in practice all ensembles in finite traps undergo a natural evaporation and
are always found out-of-equilibrium, regenerating the truncated “hot tails” of
their thermal distribution functions. In deep traps with η > 10, however,
natural evaporation is highly suppressed. The trap depth η = Vcutoff/(kBT ) is
defined as the ratio between cut-off potential energy and the ensemble thermal
energy characterised by kBT . Occasionally, the trap depth is also referred to
as a temperature Vcutoff/kB and can similarly be compared with the ensemble
temperature.

The fraction of particles truncated at a specific kinetic energy E = ηkBT
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can be calculated as

c =

∫∞
ηkBT

√
Ee−E/(kBT )dE

∫∞
0

√
Ee−E/(kBT )dE

, (4.38)

which approaches c = 2
√

η/π e−η for truncation parameters larger than η ≥ 5
[68].

Figure 4.10: Natural evaporation from a quadrupole trap. N = 5e10 particles
in thermal equilibrium at T = 50 mK are transferred from a deep trap into a
shallower trap of 250 mK depth at t = 0. The first subplot shows the energies of
the trapped and lost fractions, and the total energy. The second subplot shows
the temporal evolution of the temperature of the remaining trapped particles.
In the third subplot the phase space density is plotted versus the number of
trapped particles in the trap. Over time the system moves in the direction
indicated by the arrow.

The three plots in figure 4.10 show a simulation of natural evaporation (with
no inelastic collisions) at an initial temperature of T = 50 mK from a quadrupole
trap after a three-dimensional spatial truncation of the confining trap to a new
finite depth of η = 5. Figure A) shows the energies of the trapped and the
evaporated particle fraction, and the constant total energy (constant to better
than 1% after 20 s. Small deviation due to accumulated numerical inaccuracies).
Figure B) shows the ensemble temperature based on the mean particle velocity.
Since temperature is only strictly defined for equilibrium conditions, physically
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Figure 4.11: Evolution of the energy distribution function f(E) over the natural
evaporation process detailed in figure 4.10. The particle energy histogram (in
arbitrary units) is plotted every second over the 20 s simulation duration.

valid readings are expected only several collision times after the initial non-
adiabatic decrease of the trap depth. However, the trend and the cooling effect
are clearly visible. As the density increases, the collision time tc decreases from
an initial value of 0.15 s to 0.025 s after 20 s of simulation time in the run shown
in the figures.

Figure C) shows the development of the mean phase space density D versus
the number of remaining trapped particles N . The motion of the system state
over time is indicated by the arrow. It can be seen how the cooling efficiency,
defined as the gradient γ in figure C)

γ = −d(lnD)

d(lnN)
(4.39)

increases continuously as the elastic thermalisation reproduces “hot” particles.
Fast particles carry away more energy with smaller particle loss, increasing the
cooling efficiency. The initial reduction in trap depth leads to the instantaneous
evaporation of the fastest 20% of the trapped particles. As time progresses, the
particle loss rate decreases exponentially as the system thermalises asymptot-
ically, reaching T = 18 mK after 20 s. The increased density and decreased
temperature during this cooling step represent an increase in phase space den-
sity of more than one order of magnitude.
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Note that without the heating effects of inelastic collisions, the temperature
would keep decreasing indefinitely due to natural evaporation, at a continuously
slowing rate.

4.5.2 Forced evaporative cooling strategy

Any experimental realisation of evaporative cooling will try to reach the “run-
away” evaporation regime. Decreasing ensemble temperature due to cooling go
along with decreased particle number and decreased average particle velocity.
Thus elastic collision rates also decrease, increasing the ensemble thermalisation
time. Unlike in square well potentials, the density in inhomogeneous traps (har-
monic or linear) increases with decreasing temperatures, offsetting the particle
loss and velocity reductions.

“Runaway evaporation” can be reached when the elastic thermalisation rate
increases as the ensemble cools down and over-compensates for particle loss and
velocity decreases. In such a situation, the cooling proceeds faster and faster
leading to large increases in phase space density and making it possible in some
cases to reach the BEC transition temperature.

The minimum ratio R = τloss/τel between inelastic and elastic collision time
for runaway evaporation to be achieved is approximately 400 for harmonic, and
100 for quadrupole traps [62, 117], giving the linear trap a clear advantage,
which is due to the compression effects discussed in section 4.2.2.

Theoretically, evaporative cooling can be optimised, when all the parameters
in equations (2.71) for the cooling efficiency γ are known (see section 2.4.5).
Thus an ideal trap truncation depth η exists for all possible values of R. Ketterle
and van Druten [62] show diagrams of evaporation efficiency γ versus truncation
parameter η for a wide range of R values in different traps, which we have
used to design simplified near optimal evaporation ramps in our simulations.
Essentially, the truncation parameter needs to be small for small values of R;
cooling efficiency is small for small values of η, since evaporation less selective.
For truncation parameters chosen too high for small values of R (corresponding
to large inelastic loss rates), too few particles will be evaporated while the
cloud rapidly loses population due to inelastic collisions. However, efficient
evaporation can generally be achieved with truncation parameters of around
η = 6, when R is in a typical range between 200 and 1000.

Evaporative cooling is experimentally realised by means of radio-frequency
induced spin flips into an untrapped Zeeman-state at a specific cloud radius,
which is determined by the Zeeman energy shift of the trapped particles and
the RF field frequency [117]. Since the optimum truncation parameter typically
increases as the sample cools down and R increases, the evaporation “ramp”
chosen in experimental realisations is usually of exponential shape, with the RF
frequency decreasing as ν = ν0e

−t/τ .

Several important points need to be taken into account in the experimental
tuning of such evaporation ramps. Firstly, the ramp needs to be slow enough to
allow thermalisation of the remaining particles and fast enough so that inelastic
loss does not deplete the cloud before low temperatures or quantum degeneracy
is reached. Secondly, the starting and finishing points of the “cut” need to
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be positioned precisely to achieve the desired optimal truncation parameters.
Additionally, the RF field intensity must not be too large, so that spectral
power broadening does not spread out the cutting area too much, preventing
precise evaporation at lower temperatures.

Yamashita et. al. have investigated optimal cooling ramps in [119]. They
report that the last cooling phase can be accelerated by a linear ramp following
an initial exponential ramp.

In our simulation program, the optimal truncation parameters can be de-
rived from the precise knowledge of the elastic and inelastic collision rates,
using a simple model adapted from [62]. Figure 4.12 (in the next section)
shows simulation runs optimised accordingly, demonstrating the adverse effects
of Majorana spin flip loss at lower temperatures.

4.5.3 Majorana loss model

We have implemented a model for particle loss due to Majorana spin flips at
the central quadrupole trap zero magnetic field region as outlined in section
2.3.2. After every particle propagation procedure in the simulation, particles

which have moved into a region closer to the trap centre than b0 =
√

v~/(µB′
q)

(equation 2.63) will be transferred into their corresponding untrapped states,
accelerating out of the trap. This causes additional heating as accelerating
anti-trapped particles dissipate energy into the remaining ensemble by elastic
collisions with trapped particles. The largest heating effect of Majorana spin
flips, and inelastic collisions in general, is due to the fact that these happen at
large densities in the trap centre, where particles have below average energies.

We have found that trap loss due to this process becomes significant only
at temperatures below 500 µK and, in our case, at phase space densities above
10−4. At cryogenic temperatures on the mK scale this effect is small, but it can
eventually stop the evaporative cooling process at µK temperatures. Figure 4.12
shows the effect of different Majorana spin flip models on the evaporative cool-
ing of oxygen, where we have not taken into account the adverse effects of large
magnetic fields (as outlined in section 2.2.4). While runaway evaporative cool-
ing proceeds all the way into the quantum degenerate regime, reaching phase
space densities in the order of D = 1, presence of Majorana spin flips preclude
the cooling process at phase space densities orders of magnitude smaller, using
identical truncation and simulation parameters parameters. In figure 4.12, we
show the effect of a Majorana loss region defined by a radius of b0 (optimistic

model) and 2b0 (pessimistic model), where b0 =
√

v̄~/(µB′
q) is defined as in

equation (2.63) in section 2.3.2. In our simulation, we have used the mean
particle velocity v̄ and assumed a loss probability of 1 for particles entering the
critical region, as suggested in [50]. Particles entering the Majorana loss region
may have a finite probability to remain trapped, however, so that our optimistic
model could be closer to the truth than the pessimistic one. Note that quan-
tum degeneracy may still be reached in the presence of Majorana losses, when
the truncation parameter, which corresponds to the experimental evaporation
“ramp”, is adapted to deal with increasing inelastic loss at lower temperatures.
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Figure 4.12: Evaporative cooling of O2 in a linear trap (without taking into
account magnetic field effects on the inelastic collision rate). Quantum degen-
eracy could be reached in the absence of Majorana spin flips. A pessimistic and
an optimistic Majorana loss model preclude evaporative cooling at 100 µK and
30 µK respectively, while the effect is negligible at temperatures above 1 mK.

An optimisation in this respect will decrease the cooling efficiency, but similar
phase space densities would still be reached with smaller particle numbers.

4.5.4 Evaporative cooling of oxygen

In the previous section we have described a model and demonstrated the effects
of Majorana spin flip losses on the evaporative cooling process of oxygen in
simulations using the elastic and inelastic collsion data shown in figure 4.7.
The most notable characteristic feature of the oxygen collision data is the fact
that the inelastic collision rate drops off to values significantly below the elastic
collision rate only at temperatures colder than 50 mK. This temperature is
already somewhat too low to be reached by buffer gas cooling, as we have
explained in section 2.2.5. However, to reach the runaway cooling regime with
this molecular particle species, we need to assume a fictitious optimistic model
and start out with a temperature of T = 50 mK and a very large particle number
of N = 5·1010. This value for the particle number is very high and difficult to
achieve even in modern MOTs using easily trappable alkali gases [39]. Our
oxygen cooling simulations should be seen in this light. Unless a trap loading
mechanism other than buffer gas cooling can be found for oxygen, which rivals
the MOTs used for trapping of alkali atoms, our simulations for oxygen are
unlikely to be realised experimentally.
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Figure 4.13: Evaporative cooling with reduced dimensionality, starting at
T = 50 mK. 3D evaporation yields the best results. 2D evaporation in the
radial quadrupole trap dimensions is significantly less efficient, but leads to
a significant phase space density increase. 1D evaporation is infeasible under
the given conditions and leads to a decrease in phase space density. The total
simulation time of the shown runs, and the final temperatures are: 1D 1.39 s,
23.9 mK; 2D 0.88 s, 2.2 mK; 3D 0.23 s, 675 µK.

In addition to the Majorana trap losses at low temperatures, the effect
of the trap magnetic field on the inelastic collision rate of oxygen cannot be
neglected, as we have pointed out in section 2.2.4. The model proposed by
Volpi and Bohn in [54] would only allow trap depths of 7.1 mK (maximum
magnetic field 0.0053 T) before the inelastic collision rate exceeds the elastic
collision rate and precludes magnetic trapping. Even at lower magnetic field
strengths, which would be possible at lower temperatures with shallower traps,
the inelastic collision rate is increased considerably due to this effect, limiting
trap lifetimes or ruling out evaporative cooling altogether.

Neglecting the two adverse effects on the inelastic rates mentioned above,
oxygen can be evaporatively cooled, reaching the quantum degeneracy limit
with particle numbers as high as 105 or 106, following a steep path through
orders of magnitude in phase space density, using a near optimal truncation
parameter η. It can be seen in figure 4.12, how the small initial truncation
parameter, due to large initial inelastic collision rate, causes inefficient initial
cooling. This is necessary to reach the runaway regime with a minimal particle
loss.

The mean collision time at the fictitious initial values of T and N chosen for
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the simulation is in the order of 1 ms, so that the optimal evaporation process
can proceed rapidly and reaches high phase space densities after only seconds.
Conversely, the initial trap lifetime due to the inelastic collisions is small, casting
further doubt on whether such conditions may be achieved experimentally using
any trap loading technique.

To assess the effect of evaporation in lower dimensionality, as is the case in
quadrupole traps under the influence of gravity, we show three different evapo-
ration runs in figure 4.13, comparing 2D radial and 1D axial evaporation with
the 3D evaporation case. While two-dimensional (radial) evaporation still leads
to cooling and phase space density increase, cross-dimensional thermalisation
cannot supply enough fast moving molecules for efficient cooling in the 1D case
(axial cooling). Thus, evaporation from a quadrupole trap under the influence
of gravity may lead to additional problems.

4.5.5 Dimple trap and optical plug

Technical difficulties with the trapping and evaporative cooling processes of par-
ticles in quadrupole traps can be alleviated through the use of optical methods.
A far-detuned repulsive laser beam (blue-detuned) can for example be used as
an optical “plug” to repel trapped atoms from the critical trap centre region,
where the Majorana losses occur at low temperatures. However, this interferes
with the thermalisation process because it restricts particle motion.

A more interesting application of optical methods is the use of an attractive
red-detuned laser beam in what can be called a “dimple” trap. Such an addi-
tional Gaussian “dimple” trap potential with a time-dependent magnitude can
be expressed as

W (r, t) = Wd(t) e
−

“

|r−rd|

wd/2

”2

, (4.40)

whereWd(t) is the peak magnitude at the dimple centre position rd = xdx̂+ydŷ.
The laser beam shines into the trap along the axial z axis and provides an addi-
tional trap confinement mostly along its radial directions. The Gaussian profile
has a width of wd. The previously mentioned “plug” potential has the same
shape, but exhibits a repulsive force on the trapped atoms. In numerical simu-
lations it is possible to approximate the Gaussian dimple by a simple harmonic
trap region.

BEC of 133Cs was achieved applying the dimple technique [67]. The last
stages of evaporative cooling in caesium are low in efficiency, because of the
increasing amount of particle loss due to inelastic collisions and long thermali-
sation times. The process of adiabatically ramping up the optical dimple creates
a deepening trap well, which slowly fills up with the coldest atoms of the en-
semble. Inelastic collision rates of particles within this region of the trapping
potential are of little importance, since atoms in all magnetic states are trapped
in the attractive optical dimple potential. At the end of a standard evaporative
cooling process in a quadrupole trap, such a dimple potential can thus provide
the critical increase in phase space density, which is required to reach BEC
quantum degeneracy.
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In simulations of trapped particles in linear and harmonic traps, we could
also observe increases in the peak phase space density of several orders of mag-
nitude, when an attractive dimple potential was ramped up adiabatically. It is
notable that without detrimental effects, the position of the dimple potential
could be chosen slightly off-centre in the quadrupole potential. This was done
in order to yield a larger reduction in the Majorana loss rate at the zero mag-
netic field centre region. This technique may thus become a practical method to
achieve BEC phase space densities with particle species, which have sub-optimal
collision properties. A Gaussian trap dimple is shown at a far off-centre position
in figure 4.14.
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Figure 4.14: Linear quadrupole trap potential in two spatial dimensions with
a “dimple potential” depression (harmonic approximation) at an offset (x,y)
position from the central potential minimum.

4.6 Results

Oxygen 17O2 was identified as a molecular species, which can potentially be
trapped in magnetic traps due to its favourable Zeeman energy levels (shown
in figure 3.1 b on page 49). We find, however, that the feasibility of evapora-
tive cooling of oxygen strongly depends on the lowest temperatures and initial
population sizes, which can be achieved by trap loading procedures, such as
buffer gas cooling, as a starting point for the evaporative cooling process. The
lower the initial temperature is, the larger the ratio between elastic and inelas-
tic collisions will be. Additionally, for oxygen trapping, magnetic traps need to
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be very shallow due to the adverse influence of strong magnetic fields on the
inelastic collision rate, as explained in section 2.2.4 (page 34).

This practically rules out magnetic traps for trapping at high temperatures
in the millikelvin range, since oxygen with its relatively small magnetic mo-
ment of µ = 2µB requires fairly strong magnetic field gradients for trapping at
such high temperatures. For a practical maximum magnetic field magnitude
of 53 G, as pointed out in [54], the magnetic trap needs to be very shallow
with a depth of merely 7 mK, and it would naturally need to be loaded at tem-
peratures significantly below this figure. Presently no trap loading mechanism
of this performance exists for molecular oxygen. Purely optical trapping and
evaporation from optical traps may prove to be more feasible.

In our computer simulations of evaporative cooling of oxygen we have made
optimistic assumptions about the starting parameters for evaporative cooling,
and we have shown the feasibility of the evaporative cooling process in the
presence of the adverse effects of Majorana spin flip particle loss. Furthermore
we have shown how reduced dimensionality of the cooling process decreases
the cooling efficiency and may make it infeasible, particularly if sufficiently low
starting temperatures for the evaporative cooling runs cannot be achieved in
the trap loading procedures.

We have investigated traps combining magnetic and optical potentials, and
we have shown that an optical “dimple” potential can lead to significant in-
creases in peak phase space density. The combination of magnetic and optical
trapping methods has proven to work for problematic particle species, such as
caesium, which could not be cooled to quantum degeneracy in purely magnetic
traps. Thus we are confident that BEC phase space densities may in the fu-
ture also be reached in oxygen experiments using such combined methods. One
major obstacle for O2 cooling, however, is the large inelastic collision rate at
temperatures above 10 mK.

In the future, further computational work is planned on cooling using com-
bined magnetic and optical methods. Sympathetic cooling using multiple par-
ticle species may turn out to be a viable route to BEC of molecular oxygen.
Our simulation program has been designed for use with ensembles of multiple
particle species and can also be applied to a wide range of other dynamical
particle ensemble problems in addition to magnetic trapping and cooling.



Chapter 5

Simulations of Bose-Einstein
Condensates

Bose-Einstein Condensates (BEC) in dilute atomic quantum gases are coher-
ent macroscopic matter-wavefunctions. Experimentally realised BEC clouds
typically consist of 105-107 atoms and have sizes in the µm range. Despite
the extremely small physical size of the BEC, accurate simulation of such
clouds is a big challenge for computational physics. Computers have signifi-
cantly evolved over the last decade and are now capable of making accurate
fully three-dimensional numerical simulations of condensate clouds possible on
normal workstation computers using the Gross-Pitaevskii Equation (GPE).

While 1D and even 2D simulations are possible using limited hardware, even
using slow high-level programming languages like Matlab [120] or Octave [121],
3D simulations are a class of its own. They require a lot of memory and CPU
time. High level languages are inefficient and cannot be used fir this purpose
because of the overhead associated with them. Most importantly, such long run-
ning simulations also mandate a consistent operating environment, which is able
to run for many days or even months without overheating or crashing. These
requirements strongly favour well-chosen computer hardware, the Linux operat-
ing system, compiled programming languages and carefully debugged software.
The author would like to explicitly mention the C++ memory debugging utility
valgrind [122], which is an invaluable tool for hunting down memory leakages
and sloppy programming. Large and complex programs would not be possible
without this or similar tools.

As an example for memory demands, consider a 1283 spherically symmetric
discrete numerical grid of complex double precision floating point numbers to
hold the complex wavefunction. At 16 Bytes for a complex double, we need
32 Megabytes for a single wavefunction. In order to do numerical work, we
need at least three copies of this wavefunction in memory (see section 5.3.4 and
appendix E), increasing the memory required to close to 100MB. Note that 128
gridpoints in one dimension cannot be considered to be a very good resolution
and that a factor of two improvement in grid resolution increases memory de-
mand by a factor of 23. Computer memory is very cheap today and thus the
bottleneck for most numerical simulations is the computational power of the
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computer CPU and the limited speed at which data can be read and written
from and to main memory, rather than its actual size. One conceptual ansatz
to improving the situation is parallelisation. Parallelisation involves identifying
program components which can be split into several smaller chunks that can
be processed by different computers or CPUs simultaneously. After separate
computation, the constituent parts are then put back together again to form
the solution or an intermediate solution. This approach works well for problems
like weather forecasts on large scale parallel so-called “super computers”. In
our GPE simulations we also use parallelisation across the system’s CPUs for
Fourier transforms.

In the following sections we will outline the theory behind the numerical sim-
ulations and describe the implementation of our simulation program before we
discuss the problems we have investigated and applied the simulation program
to. Much of the work described in this chapter has been done in collaboration
with experimental BEC groups in Oxford and Konstanz.

5.1 Bose-Einstein Condensation

In this section we outline some of the basic theoretical concepts required to
understand the simulation work presented in the subsequent sections, since a
more detailed introduction is beyond the scope of this thesis. The interested
reader will find a large body of literature on the subject. A good starting point
can be found in [123].

5.1.1 Mean field theory and the GP Equation

A theoretical description of interacting ultra-cold bosonic gases starts with the
many-body Hamiltonian for N bosons trapped in an external potential Vext(r, t)

Ĥ =

∫

drΨ̂†
[

− ~
2

2m
∇2 + Vext

]

Ψ̂ +
1

2

∫∫

dr dr′Ψ̂†Ψ̂†V (r−r′)Ψ̂Ψ̂, (5.1)

where Ψ̂(r, t) is the Bose field operator and V (r−r′) is the particle interaction
potential.

Particle interactions have a tremendous influence on the physics of a BEC.
In liquid helium, where first observations of superfluidity were made and the
occurrence of BEC was suggested in 1938 [124], particle interactions are strong
due to its liquid nature. Today, we know that BEC in liquid He is highly
depleted, which means that there is a significant amount of excitations into
states other than the lowest bosonic energy state, and that only a fraction of
approximately 10% of the particles are condensed into the BEC.

In contrast to the situation for liquid helium, for dilute gases such as al-
kali BEC in magnetic traps the interactions are very weak and the interaction
potential is determined by simple s-wave scattering only (see section 2.1.4).
For this case we may replace the interaction potential with the simple binary
collision effective interaction potential

V (r−r′) = U0δ(r−r′), (5.2)



5.1. BOSE-EINSTEIN CONDENSATION 107

where U0 = 4π~
2a/m, containing the s-wave scattering length a. A simple

description of the BEC based on the assumption of a mean field Ψ(r, t), which
makes up the full Bose field Ψ̂(r, t) in combination with a small and negligible
amount of excitations δ̂(r, t) [125]

Ψ̂(r, t) = Ψ(r, t) + δ̂(r, t). (5.3)

Ψ(r, t) = 〈Ψ̂(r, t)〉 is the mean field of the Bose field operator and represents a
complex wavefunction, the dynamics of which are described by the Schrödinger
equation.

With the Heisenberg equation of motion for the Bose field operator

i~
∂

∂t
Ψ̂ = [Ψ̂, Ĥ], (5.4)

and replacing the Bose quantum field operator by a classical mean field wave-
function Ψ̂ → Ψ, we get the time-dependent so-called Gross-Pitaevskii (GP)
equation

i~
∂

∂t
Ψ(r, t) =

[

−~
2∇2

r

2m
+ Vtrap(r, t) + U0|Ψ(r, t)|2

]

Ψ(r, t) (5.5)

Note that we use the normalisation convention
∫

|Ψ|2dr = 1, while some other
authors may use the BEC particle numberN0 in the normalisation

∫

|Ψ|2dr = N0.

In such cases the Bose quantum field operator Ψ̂ would be replaced by a clas-
sical field Ψ as in Ψ̂ →

√
N0Ψ. The GP equation thus describes the atomic

field in a classical approximation neglecting quantum field fluctuations. Due to
particle interactions, a non-vanishing quantum depletion of the bosonic ground
state is not avoidable. Beyond the mean field treatment in terms of the GP
equation, BECs with small excitations can be described by the Bogoliubov-
deGennes equations, which are obtained substituting equation (5.3) into the
equation of motion (5.4) for the full Bose quantum field operator [126].

A more thorough derivation of the GP equation can be found, for example,
in [15]. Therein, Castin points out the interesting view that a pure BEC at
T=0 is a classical state of the atomic quantum field in the same way as a laser
is a classical state of the electromagnetic quantum field.

Eigenstates of the trapping potential exhibit no dynamic spatial evolution.
In such cases the wavefunction Ψ(r, t) can be separated into a part of spatial
and a second part of temporal dependence.

Ψ(r, t) = Ψ(r)e−iµt/~ (5.6)

Substituting this into the time-dependent GP equation leads to the time-inde-
pendent GP equation. µ is the chemical potential of the wavefunction.

µΨ(r) =

[(

−~
2∇2

r

2m
+ Vtrap(r)

)

+ U0|Ψ(r)|2
]

Ψ(r) (5.7)

An excellent theoretical review of the dynamics of Bose-Einstein condensation
can be found in [127].
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The Thomas-Fermi approximation

In cases of strong nonlinearity as in large condensate clouds, the kinetic energy
term in the time-independent GP equation can be neglected in comparison with
the remaining energetic contributions. This leads to an approximation of the
ground state cloud shape, which has the form of an inverted parabola for a
harmonic external trap potential Vtrap

|Ψ|2 =
1

U0
(µ− Vtrap) (5.8)

In practice, only the immediate cloud borders deviate from this approximation,
as can be seen in the gradual improvement of a Gaussian initial state guess in
figure 5.2.

5.1.2 Irrotational flow and vortices

The GP equation describes a superfluid, which cannot exhibit the common
rotational flow known from and observed in normal fluids due to its nature
as a complex wavefunction ψ = |ψ|eiS , where S = argψ is the wavefunction
phase. The phase is multi-valued in the sense that the phase S as the complex
argument is specified only on the range argψ ∈ (−π, π], where it is determined
plus or minus an integer number multiple of 2π.

With a condensate density of n(r, t) = |ψ(r, t)|2, a BEC at zero temperature
T=0 fulfills the hydrodynamic continuity and force equations of superfluids.
The continuity equation applying to the condensate is

∂n

∂t
+∇ · (nv) = 0. (5.9)

The force equation, with g characterising the interaction strength of the parti-
cles with mass m in an external potential Vext, is

m
∂v

∂t
+∇

(

Vext + gn+
mv2

2

)

= 0, (5.10)

where we have neglected the kinetic pressure term ~
2

2m
√

n
∇2√n from inside the

brackets. This is a reasonable approximation to make for large particle numbers
and strong interactions. Under such conditions the condensate density is very
smooth and homogeneous in a cloud centre region making this term negligible.
Deviations due to a breakdown of this approximation must be expected at the
cloud borders.

The velocity field v(r, t) is related to the wavefunction phase S by [128]

v(r, t) =
~

m
∇S(r, t). (5.11)

For our choice of computational units, the velocity field v(r, t) of a BEC is given
by v = 2∇S. With equations (5.9) and (5.10) this leads to the result that the
flow is irrotational.– The curl, or the vorticity, of the velocity field vanishes:

∇× v = 0 (5.12)
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Exceptions are points where the phase is undefined. This can only occur for
zero probability density. Thus BEC flow can only “go around” points of zero
density and undefined phase. Such “holes” are called vortices. Around such
points the phase circulation

∫

σ
(argψ)ds = m2π (5.13)

assumes values m 6= 0, where m denotes the integer valued multiplicity of the
vortex. σ symbolises the closed path the phase is integrated along using line
element ds.

Vortices in superfluids are quantised. In a 3D BEC cloud with a central
vortex line, the angular momentum in computational units will be ~, which is
our numerical unit of angular momentum. The angular momentum operator is
given by

L = r×P, (5.14)

where P is the momentum operator. In our dimensionless numerical formalism
we have P = −i∇. Due to the cylindrical cloud symmetry in most traps, we
are mainly interested in the z component Lz = xPy − yPx (which is also the
only L component in cartesian 2D simulations). Unlike in superfluid Helium,
the angular momentum Lz of a gas cloud depends on the vortex position due
to its inhomogeneous density profile. Application of a continuous torque (for
example using an optical stirrer in [129]) will cause a vortex to move in from
the outer “Oort cloud” to the BEC centre as the angular momentum reaches
unity.

5.2 The GPEsim program

An extensible Gross-Pitaevskii equation (GPE) solver has been implemented
from scratch using the C++ programming language exclusively. Avoiding the
perils of interpreted languages like Matlab [120] or GNU Octave [121] scripts, a
portable compiled C++ implementation of a GPE simulation package allows full
three dimensional (3D) simulations which run at reasonable speeds on present
workstation computers, where the GNU C++ compiler [130] is available.

The author’s implementation makes heavy use of the fast “FFTW” Fourier
transform package [131], which is able to use multiple processors in multi-
threaded environments, like dual processor workstation computers. It has been
optimised for low memory footprint in order to allow the largest possible com-
putational grids under given computer hardware constraints, making use of
some of the optimised algorithms described in [132].

The simulation program has grown quite large over time as more and more
modules were added to handle specific types of problems. The modular struc-
ture in the C++ programming language has helped to keep the complexity
manageable. Furthermore, the re-use of existing code modules in adaptions of
the program to different types of potentials and even to different geometries
(such as cylindrical symmetry in section 5.3.6) has lead to a proven and well-
debugged simulation program core. In the following section we will discuss the
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numerical techniques used in the development of the program before we proceed
to the problems we have applied it to.

5.3 Numerical Techniques

In this section we will present and explain some of the key techniques used
in our GPE simulation programs. The interested reader should also refer to
the program source code, which is too large to attach to this work and will be
available on the author’s web pages (and also on CD-ROM in the Konstanz
university library). In self-interest an effort was made to sufficiently comment
the source code. This helps with debugging work at later times and additionally
it allows code re-use by others. In general, program source code should gain
significance in public perception, particularly in science, since it deserves at
least as much scrutiny as the scientific publications based on such numerical
techniques.

5.3.1 Computational units

Dimensionless units are used for the numerical representation of the GP equa-
tion within the computer simulation. The GP equation in its dimensionless
form is this:

∂

∂t
Ψ(r, t) = i

[

∇2
r − V (r, t)− C|Ψ(r, t)|2

]

Ψ(r, t) (5.15)

All variables in the above equation are dimensionless and need to be converted
into SI units by scaling factors.

tSI = t0 t, t0 =
1

ωx
(5.16)

xSI = x0 x, x0 =

√

~

2mωx
(5.17)

ESI = E0 E, E0 = ~ωx (5.18)

For more than one-dimensional simulations, the remaining axis (y,z) of the
spatial vector r are also scaled into dimensionless units using the scaling factor
x0. Note that the scaling of energy in harmonic oscillator units also applies
to the potential VSI = E0 V . These scaling factors are easily obtained from
manipulations of eq. (5.5). For 3D simulations the nonlinearity factor in the
dimensionless GP equation becomes

C = N
4π~a

mωxx3
0

= 8πaN

√

2mωx

~
, (5.19)

where N is the number of particles in the simulated BEC, and a is the elastic
inter-particle scattering length. In simulations for less then three dimensions
the nonlinearity factor changes. This will be looked at in more detail in section
5.3.8.
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For the numerical computation process the right hand side of the dimen-
sionless GP equation is usually separated into two parts using a D̂ and a N̂
operator.

∂

∂t
Ψ(r, t) = D̂Ψ(r, t) + N̂Ψ(r, t) (5.20)

The D̂ operator contains only the spatial derivatives and is often referred to
as the “diffusion part” because it links grid points (note that with vanishing
N̂ it reproduces a diffusion equation), while the N̂ operator contains all the
potentials and interactions which only act locally.

D̂ = i∇2
r, N̂ = −iV (r, t)− iC|Ψ(r, t)|2 (5.21)

V is the trapping potential and C is the nonlinearity as defined above. In some
situations it is important to include gravity effects of the type +iGy into the
N̂ operator, where G represents the dimensionless gravitational potential along
the y axis in this example.

5.3.2 Fast Fourier transform method

In cartesian coordinates a very simple and efficient way to calculate the deriva-
tives in the diffusion part of the GPE uses Fourier transforms (FT). While
other methods can be used to compute this part on discrete grids, the FT
method achieves accuracies comparable to 11-point finite differencing meth-
ods [133]. Additionally this method is easily extended to multiple dimensions
and allows the use of existing highly proven and optimised FT libraries, such
as “FFTW” [131].

In an interaction picture with respect to the D̂ operator, the wavefunction
Ψ(r, t) becomes

ΨI(r, t) = e−D̂(t−τ)Ψ(r, t), (5.22)

where τ represents the time at which the interaction pictures separates from
the Schrödinger picture. Now the time-dependent GP equation (5.20) becomes

∂

∂t
ΨI(r, t) = N̂ IΨI(r, t) = (e−D̂(t−τ)N̂eD̂(t−τ))e−D̂(t−τ)Ψ(r, t)

= e−D̂(t−τ)N̂Ψ(r, t) (5.23)

In this interaction picture representation, the diffusion operator becomes diago-
nal and its eigenfunctions are the Fourier base function exp(ikx) (in 1D). In the
interaction picture, the Laplacian operator eigenvalues are the squares of the
Fourier space coordinates ki, so that an evaluation of the D̂ operator in Fourier
space consists of a simple multiplication with these. Thus, application of the
D̂ operator to a discrete numerical wavefunction can be done by moving the
wavefunction into the interaction picture using a Fourier transform, multiplying
the result with the squares of the Fourier coordinates and eventually moving
the result back into the normal picture by applying an inverse FT [52, 134].
This is a very efficient method. Additionally, it inherits its high precision from
the FFT algorithm.
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5.3.3 Unitary split step algorithm

A very simple method to propagate the GP equation in time uses the unitary
time evolution operator. A wavefunction Ψ(r, t = 0), which is a solution of the
GP equation (5.15) at time t = 0, will become (with H=D̂+N̂)

Ψ(r,∆t) = e−i[D̂+N̂ ]∆tΨ(r, 0) (5.24)

after a short time interval ∆t. To second order accuracy due to the Baker-
Campbell Hausdorff formula [28], the unitary time evolution operator can be
approximated as follows

e−i[D̂+N̂ ]∆t ≈ e− iD̂∆t
2 e−iN̂∆te−

iD̂∆t
2 +O(t3) (5.25)

In this approximation, the timestep has been split in half, a measure increasing
the accuracy to third order for N̂ operator local potentials varying slowly over
time. Additionally a split timestep makes the algorithm numerically more sta-
ble. The D̂ operator can be evaluated with the Fourier method as described in
the previous section. In total, propagation over one timestep will thus require
4 Fourier transforms in the split step case and only 2 transforms in the full step
case. This algorithm is easy to implement and requires very little memory, not
much more than the space required to store a single copy of the wavefunction.
The limited accuracy, however, makes Runge-Kutta based algorithms the better
choice as we will show in the next section.

Note than in this algorithm, due to the unitarity of the operators, the wave-
function norm will stay constant at all times during the propagation and cannot
be used as an indicator for the numerical accuracy of the numerical solutions.

5.3.4 Runge-Kutta algorithm

As we have shown above, the Fourier transform method allows us to evaluate
the spatial differentials with great precision. A method to achieve comparably
high accuracy in a temporal propagation is now required. The unitary split
step method is not well suited for long-running simulations, because it requires
a large number of timesteps to achieve reasonable accuracy.

With the definition of a function f(ΨI , t) as equation (5.23)

f(ΨI , t) :=
∂

∂t
ΨI(t) = N̂ IΨI(r, t) (5.26)

the fourth order Runge-Kutta interaction picture algorithm (RK4IP) to prop-
agate a nonlinear Schrödinger equation such as the GPE from timestep n to
timestep n+1 can be written as follows:

ΨI(tn+1) = ΨI(tn + ∆t) = ΨI(tn) +

[

k1

6
+
k2

3
+
k3

3
+
k4

6

]

∆t (5.27)

The shorthands k1 to k4 represent the four evaluations of the differential term,
the weighted sum of which determines the wavefunction value at the next
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timestep. As in [92] they are

k1 = f(ΨI , tn)

k2 = f(ΨI + k1
∆t

2
, tn +

∆t

2
)

k3 = f(ΨI + k2
∆t

2
, tn +

∆t

2
) (5.28)

k4 = f(ΨI + k3∆t, tn + ∆t)

The interaction picture separation time in the D̂ operator can be chosen to the
centre point between two timesteps (τ = ∆t/2) saving two Fourier transforms.
In total this algorithm requires eight Fourier transforms per timestep and a con-
siderably larger amount of computer memory because several modified copies
of Ψ need to be computed and kept before they are combined. We have cho-
sen a memory efficient implementation of the RK4IP algorithm described by
Caradoc-Davies in [132]. It is summarised in appendix E and requires memory
storage space equivalent to three copies of the discretised wavefunction (plus
some program overhead).

We have tried to trade in memory consumption for gains in computational
speed by expanding the phase factors used in the interaction picture evalu-
ation of the spatial derivatives into large memory tables the size of another
wavefunction copy. This however gave mixed results on different workstation
machines. Usually gains (or losses) in speed were small. The reason for this is
that presently the memory bus is the bottleneck for computer speed. The GPE
solver program is very heavy on memory I/O due to the large wavefunction
grids, particularly in 3D. Thus the computer CPU seems to be waiting for data
to be read from or written to memory most of the time and these operations
can in fact be slower than the calculation of the tabulated values from a much
smaller data set, which may happen to fit into the CPU caches. Raw CPU
speed seems to be secondary for computations of this kind, and an optimal
system will not feature the latest processor but the latest and fastest type of
memory and internal bus system.

The RK4IP method has become the method of our choice for all types of
simulations because its fourth order accuracy makes it faster than the unitary
split step algorithm by a factor between 8 and 16 when operating at the same
level of accuracy.

5.3.5 Discretisation, Accuracy and Speed

In our numerical simulations we represent the continuous quantum mechanical
wavefunction by a grid of discrete points of complex numbers. Additionally,
time is also discretised into steps through which the computer program evolves
dynamic effects of the simulated system. This does not pose a problem as long
as we are aware of the potential pitfalls arising from this treatment.

A discretisation will invariably have a limited resolution and the spatial
and temporal “grid” can be set too coarse for a valid physical description of
the effects under investigation. On the other hand, a resolution chosen too high
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will waste time and resources without gaining additional information. Thus it
is important to choose a discretisation “just right” for a specific problem.

We have to make sure that the phase difference between two grid points will
never exceed π, as this is the aliasing limit.– Values larger than π will appear to
be x-2π. This affects the maximum cloud velocities which can be represented
on a given grid resolution, since condensate velocity v is given by the spatial
gradient of the wavefunction phase S (in computational units):

v = 2∇S (5.29)

Velocities that are too high will change sign at the aliasing limit.

Temporal step size determines the accuracy of the numerical solution. Dou-
bling the number of timesteps for the same time span will increase the accuracy
by a factor of four for the second order unitary split step algorithm (section
5.3.3) and by a factor of 16 for the fourth order RK4IP algorithm (section 5.3.4).
Such error calculations can be easily done by using the numerical algorithms
to propagate wavefunctions for cases which have analytical solutions (ψtrue)
and comparing those with the numerical results (ψcomp) [134]. For smaller
time steps one finds the same improvements for the average error per grid point
∑N

i |ψ
comp
i −ψtrue

i |/N and for the maximum absolute error max(|ψcomp
i −ψtrue

i |).
The maximum allowable time step size (tolerating the accuracy loss due

to the numerical solver) largely depends on the chemical potential µ of the
wavefunction as defined by the time-independent GP equation (5.7). Increasing
the time step to a value larger than ∆t = π/µ will cross the aliasing limit.
Local difference in the chemical potential (which is only homogeneous for trap
eigenstates) will result in ambiguous phase gradients and thus in the destruction
of the cloud during the diffusion calculation. Thus in practice the time step
needs to be chosen much smaller than this.

Changes in grid and temporal resolution are not completely independent of
each other. Working on a much finer grid will also require a finer timestep as
we will see in the following considerations. For simplicity we will look at the
situation for a 1D grid on the x coordinate.

The grid resolution ∆x determines the spectral resolution in Fourier space
and thus the maximum momentum k = p/~ of the wavefunction.– Dynamic
problems require high grid resolutions. As we have shown in previous sections
the numerical solution is computed applying operators similar to e−iH∆t/~ to the
wavefunction Ψ(r, t). Since we are only interested in the relationship between
spatial and temporal resolution, we may for simplicity assume a situation where
the Hamiltonian H consists merely of the kinetic term p2/(2m) in the absence
of an external potential and nonlinear interaction. In this case, the requirement
for temporal resolution is that the exponent be much smaller than the chemical
potential µ, or for simplicity, much smaller than 1:

~k2

2m
∆t� 1 (5.30)

Combining this with the relation between spatial resolution and maximum mo-
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mentum kmax ∼ 1/∆x, we get

~

2m

∆t

(∆x)2
� 1. (5.31)

This relation explains why the use of finer spatial grids is overproportionally
expensive to compute. Doubling of the grid points (dividing ∆x by 2) requires
four times as many time steps to fulfill the numerical requirements for ∆t.

While the ∆t adjustment in such cases may not have to be quite as dra-
matic, since we will in practice never operate at the numerical aliasing limit
and since there is some room for adjustment as suggested by the inequality,
the above relationship does explain why true 3D simulations of bright gap soli-
tons (section 5.10) are impractical with present workstation computers. The
fine scale dynamics and spatial periodicity in these simulations requires very
high grid resolutions. Additionally, the simulations have to be run for very
long time intervals to allow comparisons with experimental results. The small
size of timesteps mandated by the high spatial grid resolution then causes im-
practically long program running times in the order of weeks or months for
individual configurations. Symmetry considerations however make soliton sim-
ulations practical in 2D as we will show in the next section.

5.3.6 Cylindrical symmetry and pseudo-3D

In situations where two axes of the problem are degenerate, the symmetry can
be exploited to cut down on the computational complexity of the simulations
that need to be carried out. If, for example, the problem has a spherical sym-
metry and no effects with (θ,φ) angular dependence may occur, the numerical
simulation can be conducted in 1D, where the only free spatial parameter x
stands for the radius r. This is called spherically symmetric pseudo-3D. When
the symmetry is cylindrical, i.e. axes x and y are degenerate, the problem
can be described fully using two free parameters, r and z, in what is called a
cylindrically symmetric pseudo-3D simulation.

The computational complexity grows exponentially with increasing dimen-
sionality. A resolution of 103 spatial points in 1D requires a grid of 106 points
in 2D and a mesh of 109 points in 3D. Thus, exploiting such dimensionality-
decreasing symmetries is crucial. However, this requires some non-trivial changes
to existing computer programs designed for simulations in cartesian coordinates.
Except for the cartesian 2D and 3D cases, the cylindrically symmetric case is the
most important for our work. Therefore, we will discuss it here as an example.

The time-dependent GP equation (5.5) simplifies for a cylindrically sym-
metric potential as follows:

i
∂Ψ(r, t)

∂t
= −

(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂φ2
+

∂2

∂z2

)

Ψ(r, z, φ, t)

+
[

Vtrap(r, z, t) + U0|Ψ(r, z, φ, t)|2
]

Ψ(r, z, φ, t) (5.32)

For cylindrically symmetric wavefunctions Φ(r, z, t) such that ∂Φ/∂φ = 0, this
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simplifies to

i
∂Φ(r, t)

∂t
= −

(

∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2

)

Φ(r, z, t)

+
[

Vtrap(r, z, t) + U0|Ψ(r, z, t)|2
]

Φ(r, z, t) (5.33)

For φ-dependent wavefunctions Φ(r, z, t)e−imzφ with mz 6= 0, angular momen-
tum is conserved by the cylindrical symmetry of the potential, and a centrifugal
barrier term m2

z/r
2 needs to be retained in addition to Vtrap in (5.33).

The 2D cylindrically symmetric case expressed in eq. (5.33) can be discre-
tised and solved with comparatively low numerical effort by a explicit Dufort-
Frankel type scheme [135] as follows. (Upper indices– time step, lower indices–
r, z spatial steps.)

i
ψn+1

jk − ψn−1
jk

2∆t
= −

ψn
j+1,k − (ψn+1

jk + ψn−1
jk ) + ψn

j−1,k

∆r2
− 1

rj

ψn
j+1,k − ψn

j−1,k

2∆r

−
ψn

j,k+1−(ψn+1
jk +ψn−1

jk )+ψn
j,k+1

∆z2
+Vtrap(r, z, t)

ψn+1
jk −ψn−1

jk

2

+ U0|ψn
jk|2

ψn+1
jk − ψn−1

jk

2
(5.34)

The grid is chosen such that rj = (j−1/2)∆r, with ∆r = R/(n+1), avoiding the
coordinate origin. This scheme promises the most efficient numerical solution,
but it suffers the problems of explicit algorithms. While semi-explicit algorithms
have also been applied to this problem [136], we decided to continue using our
proven GPE-solver and RK4IP algorithm (section 5.3.4), making the necessary
changes to allow 2D cylindrically symmetric simulations.

While it would be possible to optimise the existing code to operate on an
interval r = [0, R] instead of the typical x = [−L,L], this would mean heavy
changes in the low proven level code in the simulation. Instead of doing this,
we sacrifice some efficiency and operate on an interval r = [−R,R], interpreting
the negative r-part as an azimuthal rotation of the positive r-part by an angle
of π. The symmetry requires that Φ(−r, z) = Φ(r, z). This is the reason why
efficiency could be improved on the DFT level by using symmetric discrete
cosine transforms (DCT) instead of DFTs. In practice, however, the negative
part can simply be ignored as ballast here.

Analog to the explanation of the RK4IP algorithm in section 5.3.4, we can
write equation (5.33) as

∂Φ

∂t
= i[Dcyl +Ncyl]Φ, (5.35)

where Dcyl is

Dcyl =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
(5.36)

The problematic part in integrating this equation into the RK4IP algorithm is
the fact that the Dr = (1/r)(∂/∂r) part is not diagonal in the Fourier basis
and must be handled separately.
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The evaluation of Dr can be achieved, with precision comparable to the
precision achieved in evaluating the derivatives in D, using the Fourier method
(section 5.3.2), by employing multi-point central differencing schemes (see ap-
pendix F). An 11-point scheme yields precision equivalent to a Fourier type
differential evaluation [133]. In order to allow a conventional Fourier evaluation
of the remaining part D̃ of Dcyl = D̃ + Dr, we put the evaluation of Dr into
the N operator, so that we get

Ncyl = Dr +N = Dr − V (r, t)− C|Ψ|2 =
1

r

∂

∂r
− V (r, t)− C|Ψ|2. (5.37)

In the interaction picture representation this becomes

[Dr +N ]I = [Ncyl]I = ei(t−t′)D̃[Dr +Ncyl]e
−i(t−t′)D̃. (5.38)

With the additional evaluation of theDr term using a finite differencing method,
it is thus possible to use the proven and efficient code developed for cartesian
2D and 3D problems to solve cylindrically symmetric problems in “pseudo-3D”.

5.3.7 Initial state generation

The natural choice for a simulation initial state is a trap eigenstate, in particular
the trap ground state. An important feature of the trap ground states is that
it has a long simulation lifetime and rests in the trap. Thus it is an ideal state
for code debugging and an excellent test case. Furthermore it can serve as
a starting point for simulations of manipulation and excitation of condensate
clouds.

Analytical methods to determine trap eigenstates using conjugate gradient
techniques have been described in [133]. These methods are also suitable to
calculate higher order excitation states. However, these methods are relatively
difficult to implement numerically and may require further interpolation to
project onto numerical grids [132]. For the sake of simplicity and at the expense
of CPU computing time, we have used a method for generating eigenstates,
which allows the use of the existing and proven GPE simulation code. This
method will be outlined below.

Trap ground states Ψ0(r, t) evolve over time according to the equation

Ψ0(r, t) = Ψ0(r) e
−iµt, (5.39)

where µ is the chemical potential, which can be written as

µ =
3
∑

i=1

Ekin,i +
3
∑

i=1

Epot,i + 2Eint (5.40)

for a wavefunction normalised to unity (
∫

Ψ∗Ψ = 1). The energies are calculated
as integrals over all space V as follows.

Ekin = −
∫

V
Ψ∗∇2Ψ dV (5.41)

Epot =

∫

V
Ψ∗VtrapΨ dV (5.42)

Eint =
1

2
C

∫

V
|Ψ|4 dV (5.43)
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Figure 5.1: Evolution of cloud shape during the initial state calculation process
using the negative imaginary time GPE propagation technique. The solid line
shows the radial (x,y) FWHM, the dashed line shows the z-FWHM, multiplied
by a factor of 15 for clarity. 4e5 (real) timesteps are equivalent to one full trap
cycle.

Eint is the interaction energy, often called the self-energy, due to the nonlinear
interaction C as defined in section 5.3.1. Ekin is the kinetic energy, which
is small and may be neglected in the Thomas-Fermi approximation to obtain
approximate ground states. Epot is the potential energy due to the external trap
magnetic field. As we can see in eq. (5.39), the only parameter that changes
during the trap eigenstate’s temporal evolution is its phase. We can use this
fact to find ground states iteratively starting from an approximate solution.

Note that if we were to propagate this state in so called “negative imagi-
nary time”, the e−iµt factor would turn into a homogeneous damping factor.
This can be used in a very simple and elegant technique to find the eigenstate
iteratively. An initial guess, which can, for example, be the linear (gaussian)
solution, is propagated over a small negative imaginary timestep and renor-
malised afterwards. Repeated application of this procedure will iterate towards
a state with a homogeneous flat µ across the whole cloud. Regions with larger
values of µ will experience stronger damping and regions with smaller values
of µ will experience weaker damping. Thereby the cloud will slowly change its
shape towards the eigenstate solution. Technically this is an algorithm using the
method of steepest descends [137], and in its simplicity it can be implemented
with minimal changes to the RK4IP algorithm solver.

Figure 5.1 shows the evolution of the radial and axial width of a cloud during
iterative damping into an eigenstate. Figure 5.2 shows cloud density profiles
along y = z = 0. It is evident that the final values are reached asymptotically
with a very small rate of change after long run times. The Thomas-Fermi
shape is not perfectly reached after 15000 iterations. The convergence process
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Figure 5.2: Cloud density cuts along x-axis at iteration levels 1500, 3000 and
15000 (blue, green, red). From an initial Gaussian (not drawn), the cloud
spreads out into typical inverted parabola Thomas-Fermi shape.

could theoretically be speeded up by enlarging the magnitude of the imaginary
negative timestep size with increasing number of iterations. In doing this,
however, care must be taken not to amplify errors due to finite machine floating
point precision.

Since eigenstates generated using this method are only close to perfect, it is
important to control their quality in order to judge whether or not it will be good
enough for a specific simulation. Quality is usually only an issue for high pre-
cision measurements where remaining residual excitations such as quadrupole
modes will have disturbing effects and for extremely long running simulations.
Rapid profiling of parameter spaces with cloud eigenstates on coarse discrete
grids will not be quite as demanding on eigenstate quality. Therefore, in prac-
tice, small deviations are not a problem. Before “production use” eigenstates
can be continuously improved running the damping program in the background
on spare CPU time.

One useful measure of trap eigenstate quality can be found by mean of the
virial theorem. Through the use of scaling transforms in expressions for the
trap eigenstate and the fact that the eigenstate energy remains constant for
small variations [126], we get the following relations (for individual dimensions
i and for total values):

Ekin,i − Epot,i +
1

2
Eint = 0 (5.44)

2Ekin − 2Epot + 3Eint = 0 (5.45)

Figure 5.3 shows how these relations approach zero during the iterative
damping process (same situation as in figure 5.1). Eigenstate quality will still
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Figure 5.3: Evolution of cloud energies during the initial state calcula-
tion process using the negative imaginary time GPE propagation technique.
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ergies approach a steady solution. 4e5 (real) timesteps are equivalent to one
full trap cycle.

improve in terms of this sensitive measure long after noticeable changes in the
cloud shape have stopped.

5.3.8 Applicability of 2D simulations to 3D experiments

In many situations, one is limited to simulating BEC problems in only two
dimensions because full 3D simulations are computationally too expensive and
thus too time-consuming. This is exactly the situation in our simulations of
the formation of bright atomic band gap solitons. Here, we are required to
consider a large spatial range in one of the spatial dimensions (x) because we
need to simulate many nodes of the modulated periodic potential created by
the standing laser light field. At the same time, each of the nodes has a fine
scale density structure and strong phase gradients. Because of this, we need
fine temporal resolution, which adds up to large numerical grids and a large
number of timesteps.

Because of the strong radial confinement of the essentially cylindrical sym-
metric problem in the remaining two dimensions (y,z), a transition to a two-
dimensional description is prudent. However, due to the nonlinearity of the
GPE, the three dimensions are not completely independent and a simulation
with a reduced dimensionality will necessarily imply introducing another ap-
proximation level. If the dimension we want to omit in the numerical simulation
is strongly confined by the trapping potential, we can make the reasonable as-
sumption that the wavefunction is separable:

Ψ(x, y, z) ≈ Ψ(x, y)Φ0(z) (5.46)
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Here, Φ0(x) is the ground state in the strongly confined (z) direction, which
can be written as a Gaussian

Φ0(z) =
1

√√
πw

e−
z2

2w2 , (5.47)

chosen such that
∫

Φ∗
0(z)Φ0(z)dz = 1 with w =

√

~/mωz. Now the time
dependent GPE can be written as

iΨ(x, y)Φ0(z) = Φ0(z)Hx,yΦ(x, y) + E0,zΦ0(z)Φ(x, y)

+ C3D|Φ0(z)|2Φ0(z)|Φ(x, y)|2Φ(x, y), (5.48)

where E0,z is the ground state energy of Φ0(z).

One can now multiply the above equation by the complex conjugate of Φ0(z)
and integrate over (z). Since Φ0(z) is normalised, the only term in the GPE
affected by this is the nonlinear term. We get

iΨ(x, y) = (Hx,y + E0,z)Ψ(x, y) + C3D

∫

|Φ0(z)|4dz|Φ(x, y)|2Φ(x, y). (5.49)

We can now introduce a new C2D, which is

C2D =
C3D√
2πw

. (5.50)

This shows the relationship between the nonlinearity factors of a 3D and a 2D
simulation describing the same physical situation. Since w has the dimension-
ality of a distance, the factor between the two nonlinearities is often referred to
as the nonlinear reduction length.

In numerical units, where spatial dimensions are scaled by the harmonic
oscillator length x0 =

√

~/2mωx, the transition between 2D and 3D nonlineari-
ties is described by a simple factor. Assuming we want to reduce dimensionality
by integrating strongly confined dimension (z), the nonlinear reduction length
w in scaled dimensionless units becomes

w

x0
=

√

2
ωx

ωz

and thus

C2D =
C3D

√

4πωx/ωz

.

Reducing the dimensionality from 3D to 1D, we get an additional factor of
(
√

2π w)−1. Thus: C1D = C3D/(2πw
2). The situation is different for sim-

ulations in “pseudo-3D” as described in sections 5.3.6 and 5.10.2. In these
simulations the cylindrical symmetry is exploited to reduce the numerical com-
plexity from 3D to 2D. However, no dimension is “frozen out” in the way
described above, so that the pseudo-3D simulations must be regarded as true
three-dimensional simulations with regard to the nonlinearity.
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5.3.9 BEC cloud angles

In many simulations, such as those of the scissors mode (section 5.4.1), it nec-
essary to monitor oscillations of the condensate cloud. While this is a difficult
problem in an experimental BEC observation, requiring a large number of de-
structive “shots” at different simulation times, numerically this can be done at
every timestep by calculating a few sums over our wavefunction grid. For a
normalised discrete wavefunction

∑

i ψi = 1 it is easy to calculate the centre of
gravity coordinate rcom as

rcom =
∑

i

ri|ψi|2. (5.51)

With this the inertial tensor of the cloud can be calculated numerically as

Iij =
∑

i

|ψi|2
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 , (5.52)

where we use coordinates r′ = (x′, y′, z′) relative to the cloud’s centre of mass
r′ = r− rcom. The BEC clouds in our simulations usually have an oblate shape
(“pancake”) with cylindrical symmetry and relative sizes (lx, ly, lz) = (1, 1,

√
8).

This is due to the trapping potentials commonly used in BEC experiments (see
section 5.5).

In order to find the cloud angle relative to an initial direction, we need to
track the three inertial axes over time, which are eigenvectors of the inertial
tensor. Numerically this problem can easily be solved using library functions
from the GNU scientific library [138].

5.3.10 Vortex detection

Spatial detection of vortices in BEC clouds is an important method for data
acquisition in simulations of the superfluid gyroscope and excitations of Kelvin
modes (section 5.7). Again, numerically this problem is more easily and accu-
rately solved than in laboratory BEC experiments.

Vortices appear as points in 2D simulations in the shape of straight or curved
lines in 3D simulations. The detection algorithm will always consider individual
2D planes. Vortices are identified by their phase signature, which is a positive or
negative multiple of 2π, depending on their multiplicity and handedness, when
tracing out a closed path around them. Evaluting the phase differences around
any non-vortex grid point will show phase individual differences from −π to π
between any two points on the eight intervals. An enclosed vortex, however,
causes a jump larger than π or smaller than −π somewhere along the path
because of the equivalence of phases S = 0, 2π, 4π, . . . Counting these jumps
along paths around all grid points thus allows the detection of vortex position
and handedness. For eight-interval paths, the detection limit is reached for
vortices of multiplicity m=±3. This is because we want to the detect the vortex
orientation, but cannot distinguish between phase differences larger than π and
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a smaller negative value. Thus the true limit for eight intervals is 8π = 4 · 2π,
vortices with m=±4, but this cannot be reached in practice.

We have also used a version of this algorithm with only four intervals tracing
out a closed path around a grid gap. This version will detect only singly charged
vortices, which is sufficient for many applications and faster.

The vortex detection algorithm needs to take into account the fact that the
low density areas of our discretised wavefunction, areas where the wavefunc-
tion vanishes for all practical purposes, appear to be full of vortices. The low
density regions abound with extremely weak high frequency excitations with
wild phase fluctuations– extremely small floating point complex numbers with
almost random phases. This can be called an “Oort cloud” in reference to a
cloud of rocky or comet-like small objects in the outer regions of our solar sys-
tem. Unlike these, the Oort vortices do not have any physical importance and
we can avoid counting and detecting them by specifying a minimum density
|ψi|2 for the detection algorithm.

5.4 Collective cloud excitations in a BEC

As we have outlined in section 5.3.7, the most important feature of the BEC
trap ground state is that it rests motionless in its trap for arbitrary lengths
of simulation time. Meaningful experiments and simulations, however, will in-
vestigate dynamics of the trapped BEC cloud, which can be excited in many
different ways. For the time being we will look into low frequency and low
energy collective excitations of the whole cloud. Low excitation energy in this
context means that the energies are much smaller than the mean-field interac-
tion between the atoms (the chemical potential). Excitations of this scale are
of collective nature. Angular excitations in form of vortices have been glanced
in section 5.1.2 and high frequency excitations up to finite temperature effects
cannot be treated reliably within the mean field approximation of the GP equa-
tion.

The most simple excitations of a trapped BEC cloud are the dipole oscilla-
tions performed by the cloud, when the initial state is not centered within the
harmonic potential. In a TOP trap (with harmonic potential), the x and y oscil-
lations are energetically degenerate and have the oscillation frequency ωx,y. The
z dipole oscillation has a frequency of ωz =

√
8 ωx,y due to the TOP-averaged

double axial magnetic field gradient as described in section 2.2.2.

In addition to the dipole excitations, quadrupole excitations exist in several
different modes. These modes do not necessarily correspond to the harmonic
oscillator frequencies directly because of the atomic interactions. In a an axially
symmetric trap like the TOP trap, angular momentum about the symmetry
axis is conserved and m is a good quantum number, which can be used to
denote the excitation states. The lowest lying quadrupole mode is the m=2
mode, which involves deformation of the cloud in the xy-plane with no motion
along the z axis. This mode is doubly degenerate (m = ±2) and involves two
“tidal waves” oscillating around the cloud in the xy-plane in clockwise or anti-
clockwise orientation with a frequency of

√
2 ωx,y. A superposition of both
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Figure 5.4: Energy spectrum of collective excitations of a BEC cloud in a TOP
trap. Presence of a central vortex breaks the degeneracy of the |m|=2 and
|m|=1 modes.

equally excited modes will not exhibit a “rotation” when looking down onto
the cloud along the z-axis.

In the low lying m=0 quadrupole mode, the radial and axial cloud sizes
oscillate in anti-phase. In the high lying m=0 mode, the axial and radial direc-
tions oscillate in phase. This is often called the “breathing” mode of the BEC
cloud. The frequencies for the m=0 quadrupole modes have been derived by
Stringari in [128] using the GP equation and hydrodynamic theory. With the
trap frequency ratio λ = ωz/ωx,y these are

ω2(m = 0)

ω2
x,y

= 2 +
2

3
λ2 ± 1

2

√

9λ4 − 16λ2 + 16, (5.53)

where the + sign stands for the “breathing” mode and the − sign stands for the
low-lying mode. Further quadrupole modes are the so-called “scissors” modes,
which we will look at more closely in the following section. The spectrum of
the low frequency excitations of a BEC cloud in a TOP trap is shown in figure
5.4.

5.4.1 Scissors mode

The scissors mode is an odd-parity collective excitation of a BEC cloud in
an anisotropic trap. It is known as an excitation in atomic nuclei, predicted
theoretically by geometric models and found experimentally in 1984 [139]. In
a BEC the scissors mode allows the direct observation of the superfluid nature
of the condensate. The scissors mode can be excited by a small angle trap tilt
about the y or x axis. This causes an oscillatory response of the cloud about the
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respective axis, which distinctly depends on the nature of the cloud. Maragò
et. al. have used the response for experimental investigations of a (partially)
condensed cloud at finite condensate temperatures [140,51,141].

A theoretical investigation of the scissors mode and a calculation of its ex-
citation frequency has been published by Guére-Odelin in [142]. The derivation
starts from the condensate irrotational flow field

v(r, t) = (~/m)∇S(r, t),

where S is the wavefunction phase, and the superfluid hydrodynamic equations
(5.9) and (5.10), as discussed above in section 5.1.2. Considering the Thomas-
Fermi density distribution and a small angle scissors tilt, one additionally finds
that the scissors motion is independent of compressional modes. Thus the flow
is steady:

∇ · v(r, t) = 0. (5.54)

The above constraints lead to the following expression for the condensate phase

S(r, t) = (m/~)β(t)xz. (5.55)

Consequently the hydrodynamic equations yield for the trap angle θ and the
phase parameter [51]

θ̇(t) = −β(t)/ε, β̇(t) = 2ω̄2εθ(t), (5.56)

where the trap deformation parameter ε and the frequency ω̄ are defined as

ε =
ω2

z − ω2
x

ω2
z + ω2

x

, ω̄ =

√

ω2
x + ω2

z

2
. (5.57)

The correct initial conditions in equation (5.56) then leads to the solution

θ(t) = θ0 cos(ωsct), β(t) = εθ0ωsc sin(ωsct), (5.58)

where the scissors frequency for the TOP trap case with ωz =
√

8 ωx becomes
ωsc = 3ωx. In general, for axial trap anisotropies λ = ωz/ω⊥, the scissors mode
frequency is

ωsc =
√

1 + λ2 ω⊥. (5.59)

Thus at zero temperature, the two energetically degenerate scissors modes,
which are individually characterised by functions of the form f(r)xz and f(r)yz
[143], represent an undamped single frequency oscillation, provided that the
trap rotation angle used to excite the scissors mode is small.

The superfluid scissors mode oscillation is the result of a strongly quenched
moment of inertia of the condensed cloud. For finite temperatures, the moment
of inertia approaches the (larger) rigid body value of Θ = mN〈x2+y2〉 (average
over N ensemble particles) as the condensate fraction decreases. The different
oscillation frequencies and amplitude damping at finite temperature can be used
as a detector for BEC.
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5.5 Implementation of full tilted-TOP trap dynam-
ics in 3D

Full dynamical TOP trap

Experimental preparation of BEC clouds is often done in TOP traps, which
have been introduced in section 2.2.2. TOP traps are relatively simple to set
up and they offer a great deal of control over the experimental parameters.
While this can be safely neglected, the trap magnetic field, however, is only
approximately harmonic in its temporal average and the microscopic dynamics
are more intricate than often thought. This is evident in multi-state coupling
effects and cloud micromotion over the TOP field orbit period [52].

In the numerical simulation the external trap potential Vext was given the
explicit time dependence due to the TOP bias field given in equation (2.53), a
linear quadrupole field orbiting the trap centre with ωTOP in the range of 20
to 60 ωx,y. The rapid dynamics of this required decreasing the simulation time
steps by a factor of 10 to 100, slowing simulations down accordingly.

Tilted dynamical TOP trap

In experiments with scissors mode excitations in BEC at zero and at finite
temperatures, the Oxford group gathered data which pointed to coupling effects
between the m=2 quadrupole mode with a frequency of

√
2 ωx,y and the xz-

scissors mode. In order to rule out a coupling due to effects of the TOP trap
setup, several long-running numerical simulation of a condensate with full 3D
TOP trap dynamics were carried out. In many simulations with quadrupole
excited initial states and scissors mode excitations in tilted TOP traps, we found
that TOP trap geometry and dynamical effects do not change the outcome of
GPE simulations in any significant way, as far as collective cloud excitations
and effects averaged over several TOP orbit periods τTOP = 2π/ωTOP are
concerned. This proved that for single state simulations at zero temperature
the numerically much less expensive time-averaged description is sufficient.

The numerical implementation of a tilted TOP trap is not as straight for-
ward as it initially seems, because the introduction of an oscillating magnetic
bias field in the z-direction in addition to the static quadrupole field and the
usual oscillating TOP bias field modifies the time-averaged trap frequencies as
detailed in [51]. This also requires adjustments to the shape of initial states
used for simulations in such a trap. Furthermore the need to flexibly adapt
the initial cloud angle to put a cloud into various angular scissors excitations
or resting positions for tilted TOP traps required the simulation program to
handle two different tilt angles.– The trap tilt due to the z-bias field (note that
the shifted quadrupole field retains perfect axial symmetry at all times) and
secondly the initial cloud tilt angle of the initial state. For consistency, the
states were always generated without any tilt-angle. The resting position of a
BEC cloud in the tilted TOP trap, however, corresponds to a tilt (by a different
angle) of the initial state.
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5.6 The superfluid gyroscope

The superfluid nature of a BEC as a single macroscopic wavefunction constrains
the flow patterns, which are allowed within a BE condensed particle cloud. Flow
is always irrotational and application of external torques will cause a unique
response, causing vortex formation (see sections 5.1.2 and 5.3.10).

A very peculiar state of a BEC cloud is one with a single central vortex,
when all participating atoms have an angular momentum of ~. Macroscopically
the cloud has an angular momentum of 〈Lz〉 = N~ in the central vortex state.
A thorough theoretical investigation into the stability of central vortex states in
various trap geometries at zero and at finite temperatures has been published
by Isoshima et. al. in [144].

In TOP style traps with oblate BEC clouds and axial cylindrical symmetry
(trap frequencies ωz =

√
8ω⊥), central vortex states can be created using several

techniques, such as using slightly eccentric (ωx/ωy = 1.04) TOP fields [145] to
exert a torque on the cloud, or by immediate stirring of the condensate using a
detuned attractive or repulsive laser beam [146].

Figure 5.5: This plot shows the oscillations of the cloud’s main inertial axis
around the x (dashed) and y axis (solid), after an initial trap tilt of 7◦ around
the y axis to excite the scissors mode in a superfluid gyroscope. The low
frequency gyroscopic cloud precession at approximately 0.14 ω⊥ is evident in
the beat pattern between the xz and yz scissors modes.

The presence of the central vortex lifts the degeneracies of the |m|=2 quad-
rupole and the |m|=1 scissors modes. Thus a typical |m|=2 quadrupole mode
excitation (as a superposition of both modes with equal amplitudes) will start
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Figure 5.6: The beat pattern in figure 5.5 is due to the lifted degeneracy of
the two |m|=1 scissors modes. This spectrum of the scissors mode oscillations
of the cloud main inertial axis in x (dashed line) and y (solid line) at 3ω⊥
reveals a splitting by Ω = 0.14ω⊥, which causes two overlapping and hardly
distinguishable peaks at a frequency resolution (in this long run) of ∆ω = 0.08.

Figure 5.7: Spectrum of the oscillations (in x and y) of the vortex core after an
initial trap tilt of 7◦ around the y axis to excite the scissors mode in a superfluid
gyroscope. It is evident that in addition to a scissors mode oscillation at 3ω⊥,
a Kelvin mode is excited at approximately 0.7 ω⊥.

precessing around the cloud [147,148] with a small angular velocity of

Ω =
ω+ − ω−

2
=

〈Lz〉
2Nm〈x2 + y2〉 . (5.60)

Similar effects result from the excitation of the xz scissors mode by a sudden
trap tilt around the y axis. The xz scissors mode, consisting of a superposition
of both (x ± iy)z modes (|m|=1), which are energetically degenerate in the
absence of a central vortex, will precess around the cloud centre with angular
velocity Ω, periodically changing from a xz to a yz scissors oscillation, because
the two (x± iy)z modes have an energy splitting in the presence of the central
vortex.

This precession affects the cloud’s main inertial axis, which defines the “scis-
sors” tilt angle around x and y relative to the trap. The scissors motion pre-
cessing around the cloud is vaguely comparable to the precession of a tilted
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gyroscope toy. Thus we are looking at a “superfluid gyroscope”.
The angle oscillations of the main inertial axis around x and y in a simulation

of the superfluid gyroscope is shown in figure 5.5. The scissors modes are excited
by an initial sudden tilt of the harmonic trap potential by an angle of 7◦ around
the y axis. The cloud oscillates (mainly) at the scissors frequency ωsc = 3 ω⊥,
while the orientation slowly precesses around the cloud. This is visible in the
beat patterns. The precession frequency is approximately Ω = 0.14 ω⊥, which
agrees with theoretical calculations [148] for our simulation with N = 70000
87Rb atoms. The beat patterns reveal their two frequency components in the
spectrum shown in figure 5.6. The spectral resolution is ∆ω = 0.08 ω⊥, causing
significant overlap of the two peaks.

The initial trap tilt not only excites the scissors modes in the central vortex
state, as can be seen in a spectrum of the vortex core oscillation in figure 5.7.
The time series for this spectrum was collected by the determination of the xy
spatial position of the vortex core within a layer at approximately z = 2.5. It
is evident that the vortex core has a helical excitation, oscillating around the
cloud in opposite direction to the vortex flow, in addition to oscillations at the
scissors frequency, which are due to the cloud’s scissors oscillation.
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5.7 Vortex core excitations

As we have shown in the previous section, vortex lines in a BEC are rather
dynamical objects. Similar to a classical string, transversal helical vibrations
can be excited. This has been calculated for classical vortex lines by Lord Kelvin
as early as 1880 [149]. The classical results can be adapted to a vortex line in a
homogeneous superfluid BEC [150]. The excitation energy of a so-called kelvon
is [144]

~ωK '
~

2k2

2m
ln

(

1

kξ

)

, (5.61)

where ξ = 1/
√

8πna is the healing length, n is the particle density of the
fluid, a is the scattering length and m is the particle mass. k is the kelvon wave
vector and for the excitation to be stable kξ � 1 is required. In general, the
healing length is the length scale associated with the energy of the mean-field
inter-particle interactions, Uint = 4π~

2na/m. The spatial size of topological
structures such as vortices and solitons is in the order of the healing length.

Figure 5.8: Vortex core with a Kelvin wave excitation. This picture is a snap-
shot from the simulation of the superfluid gyroscope with an initial 7◦ trap tilt
around y, primarily exciting the scissors cloud oscillation mode. The snapshot
was taken at t=0.7 (in numerical units [ω−1

⊥ ]) and shows only an iso-density
surface (|Ψ|2=9e-4) of the central section of the cloud without phase colouring.

Aside from Kelvin excitations of many parallel axial vortex lines as ob-
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Figure 5.9: This plot shows the combination of wavefunction density |Ψ|2 (left)
and phase (right) for a simulation snapshot equivalent to figure 5.8. Shown
are (from top to bottom) slices of the three perpendicular planes xy, xz and
yz. The density is shown on a logarithmic colour scale. The phase graphs are
cropped at a cutoff density of 1e-10.

served experimentally in [23], “vortex lattices” in rapidly rotating BEC clouds
[151, 152] can exhibit Tkachenko excitations. Tkachenko modes are elastic ex-
citations of the parallel ordering of vortex lines in the xy-plane, which have
been observed experimentally in [153] and studied numerically by Simula et.
al. in [154]. We have not considered this type of excitation and have restricted
ourselves to BEC clouds with a single vortex.

Bretin et. al. [155] observed the decay of a m = −2 quadrupole mode into
a pair of kelvons with wave vectors k and −k. Kelvin modes always rotate in
the opposite sense as the vortex associated with them and thus the angular
momentum of a kelvon of a n = 1 vortex line is −~.

To demonstrate the resonant coupling between the scissors mode excitation
and the first odd normal Kelvin mode [156], we carried out a simulation, in
which we excited the central vortex state with two sinusoidal scissors style trap
tilting cycles with a 4 degree tilt amplitude around the x axis (y=z=0). The
trap tilt is driven with θ(t) = 4 degrees∗ sin(46.5 Hz t). In numerical units, one
trap tilt period is equivalent to τ = 1.33 (τ =1 is the ω⊥ radial trap period).
After the two driven cycles, the trap is stationary after t = 2.66.

Figure 5.10 shows the precession of the excited vortex line. The figure plots
show four iso-density surfaces at |Ψ|2=9e-4 density (the wavefunction density
is scaled so that the full spatial density integral is unity), coloured with the
wavefunction phase. The phase goes through the full jet-colourmap as it “wraps
around” the vortex line. Shown are four snapshots over a full Kelvin precession
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cycle, sliced open at the front to exhibit the central vortex line.
The absence of a significant scissors mode excitation after the driving cycles

is characteristic for the resonant driving conditions exciting the Kelvin mode.
The x, y vortex oscillation time series in figure 5.11 and the spectral analysis
of the vortex oscillations in figure 5.12 testify the resonant excitation of the
Kelvin mode. Small residual scissors mode excitations are probably due to
non-adiabatic effects and possibly a small driving frequency mismatch. It can
also be seen in the bottom row of figure 5.11, how the breaking of scissors mode
degeneracy due to the central vortex causes a slow beat pattern between the
xz and yz residual scissors mode amplitudes.

These simulation results and experimental observations of the same “tilting
mode” in a lattice of vortices in a 87Rb BEC are to be published in [23].

Figure 5.10: Surfaces of constant density |Ψ|2=9e-4 of a condensate cloud (wave
function normalised to 1), sliced open to show a central vortex state excited
by resonant driving for two vortex precession periods in the yz plane with a
driving amplitude of 4◦. The iso-surface is colour-coded with the wavefunction
phase, and the cloud represents a 87Rb BEC with approx. N=70000 atoms.
ωr=62Hz, ωz=175Hz. Figures from left top to right bottom show the following
times, t=7.80, 8.13, 8.46, 8.79 in units of ω−1

r . One full vortex precession cycle
τ=1.33 ω−1

r . The numerical spatial units in this figure are almost exactly equal
to 1 µm in SI units.
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Figure 5.11: BEC cloud and vortex oscillations as a response to resonant driving
using a trap scissors tilt for two periods of τ=1.33. Lower two curves: Main
inertial axis tilt angle in degrees in xz plane (solid line) and yz (dashed line).
Upper two curves: Response of the top of the vortex line in xz plane (solid)
and yz (dashed) in arbitrary units (centered at y=10 for clarity).

Figure 5.12: Power spectrum of vortex core oscillations in x (solid line) and y
(dashed line). The resonant driving excites the vortex precession at 0.7 ωr =
43.4 Hz almost exclusively.
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5.8 BEC expansion dynamics

Because of the small physical size of BEC clouds and because of their sensitivity,
experimental observation is usually destructive [123]. Recording of time-series
images requires the reproducible production of multiple condensate clouds. One
of the most common imaging methods drops the BEC from the trap and images
the expanding cloud after a certain specific flight/expansion time.

Full 3D simulations modelling the experimental setup of the Oxford 87Rb
BEC experiment were carried out in order to investigate how the cloud size and
shape depend on the process of trap release and to verify assumptions made
about the decay times of the optical and magnetic trap potentials. Addition-
ally, the simulation and experimental results were compared with simple trap
expansion models used in BEC experiment data processing.

The Castin-Dum BEC expansion model

In BEC clouds, where the particle interaction is dominant, the chemical poten-
tial µ is much larger than the harmonic oscillator energy ~ω̄, where ω̄ is defined
for anisotropic traps as ω̄ = 3

√
ωxωyωz. In this regime, the Thomas-Fermi ap-

proximation may be used to solve the GP equation. Castin and Dum [157]
found a way to approximate the BEC expansion process within the Thomas-
Fermi approximation with simple differential equations.

d2

dτ2
λ⊥ =

1

λ3
⊥λz

,
d2

dτ2
λz =

ε2

λ2
⊥λ

2
z

(5.62)

ε in the above is determined by the trap frequency ratio before the trap re-
lease, ε = ωz(0)/ω⊥(0), and λ stands for the characteristic cloud size in the
appropriate spatial direction.

3D BEC expansion simulation results

For the GPE expansion simulations 3D grid sizes of 128x128x256 (x,y,z) points
were used. While the initial states have a cylindrical oblate shape, with strong
confinement axis along z, the grid has been designed to accommodate for rapid
expansion along the z-axis. The simulations also modelled the situation of
quasi-2D regimes in strong axial confinement, which is experimentally achieved
by axially “squeezing” a condensate cloud in a TOP trap between two repulsive
laser light sheets.

We found that the temporal decay of the trap confining fields plays a crucial
role in the outcome of BEC expansions, particularly along strongly confined
axes. While simulations for a typical 2π·62 Hz (ωx) by 2π·175 Hz (ωz) TOP
trap state expansion exhibit no noticeable difference between an instantaneous
loss and a typical τ = 1 ms decay of confinement, the difference is significant and
needs to be taken into account for trap geometries such as for example (ω⊥,ωz)
(2π·40 Hz, 2π·1000 Hz) and (2π·30 Hz, 2π·1000 Hz). We have modelled a linear
downramp of the (optical) dipole potential part of the strong axial confinement
within t = 1 ms and an exponential decay of the magnetic field confinement
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part with time constants between τ = 1 ms and 3 ms. Figure 5.13 shows the
expansion of a (2π·62 Hz, 2π·1000 Hz) cloud of N = 75000 atoms (87Rb). The
significant differences to cloud expansions with weaker axial confinement and/or
quasi-instantaneous trap release are evident. Expansion is not smooth with a
constant velocity after an initial acceleration phase. Properties of trap field
decay heavily influence the cloud size for given expansion times. It can be seen
how the axial expansion slows down after an initial rapid acceleration when the
cloud runs into the residual, more slowly decaying magnetic trap field. The
initially shrinking radial cloud size can be attributed to a rapid density loss due
to axial expansion. The radial cloud profile changes from TF shape to Gaussian
shape as the nonlinear interaction decreases.

Figure 5.13: The left graph shows the radial (dashed) and axial FWHM size
of a BEC cloud undergoing expansion after trap release. The decay of the
initial trap potential with 1000 Hz (axial) and 62 Hz (transversal) is modelled
as shown in the right figure. The optical component of the axial part decays
linearly within 1 ms, while the magnetic components decay exponentially with
a time constant of τ = 3 ms.

Due to the highly dynamic nature of the BEC expansions, particularly at
strong z confinements, the numerical grid spacing and the temporal resolu-
tion of the simulation steps had to be very small. Temporal resolution ranged
from 128 steps/ms, for the comparatively slow expansion rate from a TOP trap
ground state, to 480 steps/ms for a rapidly expanding (2π·30 Hz, 2π·1000 Hz)
strongly confined initial state. The simulation program was used to propagate
the initial BEC cloud until an asymptotic expansion with constant expansion
rate was reached after approximately 5-10 ms. The simulation program cur-
rently does not allow much longer expansion times because of grid boundary
constraints imposed by computer memory size and CPU performance.

In BEC experiments effects of finite trap potential decay are often over-
looked (in most cases justifiably) and may contribute (small) systematic errors
to the measurement of macroscopic values such as the number of condensed
atoms in cases of strong confinements. Furthermore, the widely accepted simple
BEC expansion model for instantaneous trap release is invalid for strongly con-
fined BEC clouds, when the cloud profile along one axis is not of Thomas-Fermi
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type anymore and becomes Gaussian in response to strong spatial confinement.
In this case, the assumption at the base of many approximate theoretical mod-
els, that Na/aho � 1, is no longer valid. (This must also be given for the
Thomas-Fermi approximation to be valid.) aho =

√

~/(mωho) is the harmonic
oscillator length.

We are presently working on a publication of our results regarding failure
and improvements to the BEC expansion models [158].

5.9 Solitons in BEC

Solitons in general are steady solutions of the wave equation in nonlinear me-
dia. Usually they occur in form of non-spreading localised wave packets called
“bright solitons”. As such, solitons occur as ocean Tsunamis, as “freak waves”
in narrow channels, as pulses in nerve stimulus propagation and as light pulses
in fiber optics. Less often “dark solitons” occur as non-spreading localised
intensity dips of solitonic shape in a non-vanishing background.

In a vacuum with a linear dispersion relation ω = c0k, where c0 is the
vacuum speed of light, all frequency components of an optical pulse travel at the
same speed and solitons will not occur. Pulses of any shape will not experience
dispersion and retain their spatial and temporal shape. In the vacuum, phase
velocity equals group velocity equals vacuum speed of light. In a medium
with refractive index n, the phase velocity usually becomes a function of the
frequency, c(ω) = c0/n(ω). Thus different frequency components of a wave
packet travel at different velocities and the packet disperses. Sound dispersion
can be experienced by listening to the distorted noise transmitted over distances
in the ice sheet on a frozen lake.– High frequency components arrive before low
frequency components [159], turning pulses into chirps.

Looking at an optical pulse with an envelope A(x, t) and a central wave
vector k0

E(x, t) = <(A(x, t)eik0x−ω0t), (5.63)

in a dispersive medium, the component wave numbers k(ω) = ω/c(ω) = ωn(ω)/c0
can be expanded about k0 and ω0 as

k(ω) = k0 +
dk

dω
(ω − ω0) +

1

2

d2k

dω2
(ω − ω0)

2 +O(ω3) (5.64)

The group velocity vg, which is defined as the inverse of k′ = dk/dω = 1/vg, is
the velocity, that the envelope function A(x, t) is travelling at, while it disperses
due to non-vanishing group velocity dispersion k′′ = d2k/dω2.

Nonlinear media exhibit an intensity dependence of the refractive index,
also known as the “positive Kerr-effect”.

n(ω, I) = n0(ω) + n1|E|2. (5.65)

This leads to a so-called self-phase modulation of a wavepacket, which, by itself,
also causes a broadening of the pulse spectrum, leading to signal chirp.
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The combination of group velocity dispersion and self-phase modulation
leads to the following wavepacket envelope propagation equation.

i
∂A(x, t)

∂x
=

1

2
k′′
∂2A(x, t)

∂t2
− γ|A(x, t)|2A(x, t) (5.66)

This equation has solutions for “bright” solitons with sign(k′′γ) = −1, and for
“dark” solitons with sign(k′′γ) = 1. These solutions may be achieved by various
combinations of positive/negative dispersion and positive/negative Kerr-effect.

A BEC as described by the GP equation, which is a nonlinear Schrödinger
equation, provides a physical realisation of a system in which solitons can appear
[160].– Matter waves have a group velocity dispersion in the vacuum and the
attractive or repulsive particle interaction provides an amplitude dependent self-
phase modulation. While several types of solitons are possible under different
conditions, they all share the important property that the dispersive term in
the equation is balanced by the nonlinear term. Thus the soliton structure is
stable and exhibits no dispersion.

5.9.1 Dark solitons

Dark solitons arise as solutions of the GP equation, for N particles of mass m,
of the type

A(x, t) =

√

N

2x0
tanh

(

x− vt
x0

)

e−
iπt
4τs , (5.67)

where v is the velocity of the soliton envelope. The characteristic soliton size
x0 and the soliton period τS are defined as

x0 =
2~

2

Nmγ
, τs =

πmx2
0

2~
(5.68)

Such dark solitons are possible as stable solutions in “normal” condensates with
positive scattering length a (repulsive particle interaction) and positive particle
mass. As we will see shortly, it is possible for particles to have a negative
effective mass in periodic potentials under specific conditions. Such solitons
are called “black” when the intensity reduction goes to zero at its minimum,
“grey” if not. Dark solitons in BEC are a characteristic density “notch” with a
π phase step across it and as such they can be created by imprinting a π phase
shift into one half of a BEC cloud. This is easy to do numerically and was used
by us as a testcase in the development of our BEC simulation program. In the
experiment, localised phase imprinting is technically difficult, but dark solitons
in BEC have been observed by Denschlag et. al. in 2000 [161].

5.9.2 Bright solitons

Bright solitons in BEC require a negative particle scattering length, represent-
ing attractive interactions. While BEC species with attractive interaction exist,
they are technically challenging, unstable and limited to very small clouds. The
right conditions for bright solitons can also be created for repulsively interacting
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particles in periodic potentials, where the particles experience anomalous dis-
persion, which can be explained in terms of an effectively “negative mass” [162].
Such bright solitons are solutions of the GP equation of the type

A(x, t) =

√

N

2x0
sech

(

x− vt
x0

)

e−
iπt
4τs (5.69)

Here the mass may be effectively negative in the definition of the soliton size
x0 and period τs in equation (5.68). A(x, t) represents the envelope function,
whereas the spatial density profile in the periodic potential exhibits several
peaks. We show an example of a soliton in a periodic potential in figure 5.14.

Figure 5.14: Spatial composite figure showing wavefunction density distribu-
tion |ψ|2 (bold solid line) of a bright gap soliton and the periodic potential
(thin solid line). It can be seen how the soliton stretches over several individual
wells of the periodic potential. The dashed line shows the soliton envelope, a
fit to the characteristic sech() envelope function A(x, t). Data taken from a 1D
soliton simulation.

5.9.3 Bloch theory and band structure

The periodic potential is experimentally realised by means of a standing laser
light field, detuned far from resonance, repelling atoms from high intensity
interference nodes.

V (x) =
V0

2
cos(2kLx) (5.70)

V0 is the modulation depth, which is chosen close to the photon recoil energy
Erec = ~

2k2
rec/(2m), where kL is the laser wave vector. Thus a periodic potential

with lattice constant R = 2π/kL arises. Potentials in the order of magnitude of
Erec (note that kL=krec when V0=Erec) do not provide a very strong binding
force and confinement of the particles to individual wells. Thus the trapped
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particles can still propagate through the optical lattice without the need for
comparatively slow tunneling processes.

According to the Bloch theorem [163], eigenstates Φ(x) for any periodic
potential can be found as a product of a plane wave and a function u(x) with
periodicity matching the system lattice periodicity.

Φn,k(x) = eikxun,k(x), where un,k(x+R) = un,k(x). (5.71)

The Bloch functions for the periodic potential V (x) used in our situation can
be found as eigenfunctions of the Hamiltonian H̃ = p̃2/2m+ (V0/2) cos(2kLx̃).
Because of the periodic potential with 2π/kL periodicity, H̃ commutes with
operator eip̃π/k, as this characterises the standing wave solutions. Thus the
functions we are looking for are also eigenfunctions of this operator.

In the periodic potential we can now define a “quasi-momentum” q, which
describes the momentum of the wavepacket within one Brillouin zone q ∈
[−π/d, π/d], so that p = q+n2~krec. That is, p can only have integer multiples
of 2krec, which is defined by the optical potential, in addition to the quasi-
momentum q. The Bloch functions Φn,q(x) can now be expressed in terms of a
plane wave expansion:

Φn,q(x) = eiqx
∑

l

cl(n, q)e
il2krecx (5.72)

The Φn,q(x) can be calculated by solving the eigensystem

H̃Φn,q = En,qΦn,q, (5.73)

which only requires diagonalisation of a tri-diagonal matrix, because of the
simple cosine shape of the potential. (The cl(n, q) are only coupled to the
cl±1(n, q) elements.)

The dispersion relation E = En(k) in terms of the Bloch functions Φn,k(x)
exhibits a band structure with characteristic periodicity in terms of the Brillouin
zone introduced above. n is the band index of the Bloch functions. Figure 5.16
shows the soliton preparation procedure within the Brillouin zone. The band
structure with the energy band gap between the two lowest bands is clearly
visible.

5.9.4 Group velocity and effective mass

A BEC wavefunction in a periodic potential as outlined above is described by
its expansion in terms of Bloch functions Φn,k(x) as

Ψ(x, t) =
∑

n

kL
∫

−kL

cn(k)Φn,k(x)e
−iEn(k)t/~dk, (5.74)

where the cn(k) are the band coefficients. For a narrow quasi-momentum dis-
tribution (i.e. much narrower than the Brillouin zone, with ∆k � 2kL) the
uncertainty principle requires a large spatial envelope function stretching over
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many individual wells of the periodic potential. Without external interactions,
the BEC should initially be prepared in the lowest n = 1 energy band.

If the above assumptions hold true, the dispersion in the lowest energy band
can be expanded around the centre momentum k0 analog to equation (5.66):

E(k) = E(k0) +
∂E(k)

∂k
(k − k0) +

1

2

∂2E(k)

∂k2
(k − k0)

2 +O(k3) (5.75)

We can now identify group velocity vg and effective mass meff as [164]

vg(k) =
1

~

∂E(k)

∂k
,

1

meff (k)
= ~

2∂
2E(k)

∂k2
. (5.76)

Thus the effective mass describes the curvature of the dispersion relation E(q).
It varies from positive to large positive values as the wave packet approaches
the edge of the Brillouin zone. Here, dispersion is strongly suppressed. Fur-
ther towards the edges, meff goes through positive and negative infinity and
approaches small negative values at the edge. Therefore, dispersion can be
controlled by preparing the wavepacket at a specific location in the Brillouin
zone.

While it is necessary to resolve the fine details of the wavefunction in the
periodic potential in numerical simulations, these cannot be resolved experi-
mentally and only the slowly varying soliton envelope function A(x, t) is of ex-
perimental interest, which can be obtained from equation (5.74) as follows [165].
We assume simplified Bloch functions Φk(x) = uk(x)e

ikx, where uk(x) varies
much more slowly in k than cn(k) in (5.74), which holds true whenever a peri-
odic description of the situation is merited. We may then go as far as to replace
uk(x) by uk0(x). To second order in (k − k0) we get for the lowest (n=1) band

Ψ(x, t) = Φk0(x)e
−iE(k0)t/~

kL
∫

−kL

c(k)ei(k−k0)(x−vg(k0)t)e
−i

~(k−k0)2t
2meff (k0) dk

= Φk0(x)e
−iE(k0)t/~ A(x, t), (5.77)

where we have identified the integral as the envelope function A(x, t). Figure
5.16 shows, in an inset on the right hand side, the energy dispersion band
structure (1st diagram), the effective mass as the curvature of the dispersion
(2nd diagram) and the group velocity of a wavepacket prepared at a specific
location (3rd diagram from the top).

5.9.5 Soliton stability

The solitons discussed above arise in one-dimensional periodic optical lattices.
A dynamical stability analysis by Hilligsøe et. al. [21,22] investigated the tem-
poral development of small perturbations using the Bogoliubov-de Gennes equa-
tions. A finite temperature analysis of soliton stability can be found in [166].
The Bogoliubov-de Gennes equations arise when a perturbation δψ(x, t) is
added to the wavefunction

ψ(x, t) = e−iµt/~[ψ0(x, t) + δψ(x, t)]. (5.78)
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in the context of the GP equation. Such perturbations lead to a spectrum of
Bogoliubov modes within the Bloch energy bands. It was found that pertur-
bations δψ(x, t) do not grow over time. Solitons in 1D are thus dynamically
stable.

The situation in two and three dimensions is different. In the best of all
cases, a real physical system can be considered to be quasi-one-dimensional
when all dimensions but one are strongly confined. This results in large transver-
sal excitation energies, which are “frozen out” due to too low system energies
at low temperatures. Such situations allow the wavefunction to be separated
into quasi-independent axial and transversal parts as

ψ(x, t) = ψ(z, t)φ0(x, y), (5.79)

where φ0(x, y) represents the transversal ground state. Solitons may arise in the
axial (z) direction due to a one-dimensional optical lattice along z. ψ(x, t) in
equation (5.79) may then be identified as a quasi-one-dimensional wavefunction
ψquasi(z, t).

In practice, however, excitations of several low energy transversal modes
cannot be avoided. The stability analysis in [22] found that excited transver-
sal modes have dispersion curves parallel to the lowest energy mode. Solitons,
which are necessarily prepared at the upper band edge, are thus unstable against
decay into energetically resonant transverse excitations. It was found however,
that a quasi-gap soliton behaves like a truly one-dimensional (stable) gap soli-
ton for times smaller than the smallest decay time of the unstable Bogoliubov
modes. Thus, with a reasonable transversal confinement, such quasi-gap soli-
tons will be stable for times smaller than t = 1/(0.133ω⊥), where ω⊥ is the
(smallest) transverse trap frequency.

5.9.6 Excitation of side bands

Higher energy bands will not become significantly excited as a result of the
preparation process of the wave packet in quasi-momentum space q, as long
as the prepartion is done slowly enough. The adiabaticity criterion can be
expressed in terms of the rate of change and the energy levels as

∣
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� |En(k)− E1(k)|2
~2

(5.80)

The experimental realisation, and the simulation accordingly, uses a simple two-
step acceleration procedure, which causes a small amount of excitations. (See
section 5.10.) However, this non-adiabatic effect seems to be small enough to
be negligible.

5.9.7 Simulation data processing

In order to detect the presence of a soliton and to determine its size, process-
ing of the wavefunction data files produced by the simulation program was
necessary.
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Firstly, for two- and three-dimensional simulations, the radial part of the
wavefunction is expressed in terms of harmonic oscillator eigenfunctions to allow
separation of the axial quasi-soliton. Here we call “radial” the axis perpendicu-
lar to the axial standing light field creating the optical lattice periodic potential.
Due to strong radial confinement in the magnetic trap, radial excitations are
largely absent and “frozen out”. Excitations do however occur due to the non-
linearity, which couples together otherwise independent spatial modes. Thus
not only the ground state lowest energy harmonic oscillator eigenfunction is ex-
cited. This can also be understood by looking at the BEC cloud size, which is
much wider than the harmonic oscillator length lho =

√

2mωr/~. Thus at least
roughly the lowest three harmonic oscillator states are significantly excited in
the nonlinear cloud ground state. Excitations of radial modes are also due to
a not fully adiabatic preparation of the wavefunction at the band edge. In the
cartesian 2D case the transversal base is

φn(x) = (lho)
1/4

√

1

2nn!
√
π
e
− x2

2(lho)2Hn(x/lho), (5.81)

where the Hn(x) are the Hermite polynomials [110].
In radial 2D (axes r,z), the expansion functions are somewhat more compli-

cated, since the transverse (“radial”) axis stands for two dimensions in cylin-
drical symmetry. The radial states thus need to be expanded in terms of eigen-
functions of the radial 2D Hamiltonian H⊥ = ~ω(a†xax + a†yay), taking into
account that only states without angular momentum are permitted. Operators
c†± = (a†x ± ia†y)/

√
2 [167] create states with angular momentum l=±1, so that

we need to look for transversal eigenstates |n〉 = (1/n!)(c†+c
†
−)n|0〉. The calcu-

lation results in transversal cylindrical eigenstates φn(r⊥), expressed in terms
of the harmonic oscillator eigenstates in eq. (5.81) as follows:

φn(r⊥) =
1

2n

n
∑

m=1

√

(

2m

m

)(

2(n−m)

n−m

)

φ2m(x)φ2(n−m)(y) (5.82)

Here x and y are linked by the zero angular momentum condition and x and y
may be eliminated from the resulting functions by simply using x2 = r2 − y2.

To analyse the effect of the periodic potential and the energy band struc-
ture arising from it, all transverse modes of the wavefunction are subsequently
expanded in terms of Bloch eigenfunctions in the axial direction. The theory
behind this has been outlined in section 5.9.3 above.

5.10 Simulation of bright gap solitons

The simulation procedure for the creation and investigation of solitons follows
closely the experimental procedure developed by Eiermann et. al. in [24, 168].

A small BEC cloud of only 3000 87Rb atoms is produced by evaporative cool-
ing in a TOP trap (phase space density ∼0.03), transfer into a far-off-resonance
optical dipole trap (FORT) and further forced evaporation. The cloud size is
then reduced further to approximately 900 atoms by application of a Bragg
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pulse. Preparation of the soliton is then achieved as follows. Shortly after
the population coupled out by the Bragg pulse has left the remaining conden-
sate, an optical lattice in the form of a standing lightwave (far off-resonant at
λl = 783 nm) is ramped up to its final intensity over 4 ms. Once its full inten-
sity is reached, the dipole trap beam confining the cloud axially is switched off.
Now the optical lattice is accelerated to the recoil velocity vr = h/(mλl) in two
phases. The first fast acceleration to 80% vr over 0.67 ms and the remaining
20% within the following 0.67 ms. This is done to make the acceleration process
almost adiabatic. The soliton preparation procedure is shown schematically in
figure 5.16 on page 145.

In the numerical simulation of the experiment, we found that replacing the
Bragg pulse by a simple instantaneous reduction of the condensate interaction
simplified the problem by avoiding the need to deal with a large amount of fast-
moving outcoupled population. We thus generate an initial cloud of 3000 atoms
on a grid of 2048 or 4096 axial points. In cartesian 2D and in 2D with radial
symmetry (pseudo-3D) we found that a radial resolution of 32 grid points was
sufficient. We replace the Bragg pulse by a reduction of the cloud interaction to
a value representing the post-Bragg population of 900 atoms. This method also
leads to a collapse and compression of the initial condensate cloud while the
optical lattice potential is ramping up. All other parameters and procedures
were set and followed exactly as in the experiment.

It was necessary to deal with population leaving the condensate cloud in
axial directions after the preparation of the cloud at the band edge. Since only
a fraction of the BEC forms the dynamically stable soliton in the reference
frame of the (now moving) optical lattice, the remaining population will leave
the cloud and eventually hit the borders of our finite numerical discrete grid.
Velocity matched absorbers as developed and described in [52] remove this
population from the grid border regions with a minimal amount of reflections.

5.10.1 Soliton simulations in 1D

The primary concern of the GPE simulations with parameters identical to the
experimental setup was validation of the experimental results. Our numerical
simulations resulted in clear evidence for the formation of a soliton at the band
gap. By means of the Bloch function expansion we could determine the soliton
envelope function and determine the characteristic soliton size x0 by numerically
fitting it to the sech() soliton function. The particle population forming the
soliton was subsequently determined by numerical spatial integration of the
wavefunction density over the soliton region.

The soliton cloud, which was experimentally realised by Eiermann et. al.,
was stable for longer time intervals than we could practically simulate (due to
interferences of outcoupled population reflecting off the grid borders after more
than approximately t = 70 ms). For several different depths of the periodic
optical lattice potential, ranging from 0.4 Erec to 1.4 Erec, we have determined
the size and population of the soliton in a time interval from immediately af-
ter the complete formation until the appearance of interference effects due to
numerical grid border reflections. The depth of the optical lattice determines
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Figure 5.15: The results of 1D soliton simulations, qualitatively showing the
linear scaling properties of a bright atomic gap soliton in 1D as predicted by
equation (5.84). The dashed line represents a linear fit of the data.

the curvature of the lowest energy band at the band edge and thus the effective
(negative) mass of atoms prepared at this point. Figure 5.17 shows a snapshot
from the data processing procedure for a soliton at 0.7 Erec.

For a soliton to fulfill the definition, the energy component of the soliton
wavefunction due to energy dispersion, Ed, and the nonlinear interaction energy
Enl, the nonlinear term in the GP equation, need to cancel out.

Ed =
~

2

2meffx
2
0

, Enl = C1d|A(x, t)|2. (5.83)

Equating these terms, one finds a linear relation between x0N and −m/meff ,
which a genuine soliton needs to fulfill.

Nx0 =
2~

2

C1dm

m

meff
(5.84)

The linear relation, which we have found in 1D simulations of solitons in the
range of optical lattice potential depths from 0.4 Erec to 1.4 Erec with the cor-
responding effective masses, is shown in figure 5.15. Note that the measured
values of x0 and N have a large margin of error, as they needed to be deter-
mined from a system, which had not (yet) reached a truly steady equilibrium
state after the soliton preparation procedure. Furthermore, a comparison with
the experimental results is merely qualitative, as these simulations have been
conducted in simple 1D. The experimental results in [24] consequently show
larger atom numbers in the prepared solitons and a larger gradient for varying
depths of the lattice potential. However, these simple 1D simulations strongly
support the viability of the soliton preparation procedure and merited further
investigations. For this purpose we have developed simulation code for BEC
in cylindrical symmetry, which can be computed in two dimensions (r and z),
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as described in section 5.3.6, since truly cartesian three-dimensional soliton
simulations proved to be computationally infeasible.

Figure 5.16: Preparation of a bright atomic band gap soliton at the band edge
in an optical lattice. Figure by Eiermann et. al. [24]. Figure part a) shows the
energy dispersion for atoms in a weak periodic potential, steps c)-e) show the
preparation procedure schematically. The insets on the right hand side show
(from top to bottom) the energy dispersion, effective mass, and group velocity
at the band edge (compare with section 5.9.3). After reaching BEC in b), the
optical lattice is ramped up in c). In d) the BEC cloud is released into the
quasi-1D waveguide, while the periodic potential is accelerated to the recoil
velocity vr = h/(mλl). The BEC cloud reaches the band edge of the lowest
band forming a soliton, and it moves along with the optical lattice in e).
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Figure 5.17: Processing the data of a 1D soliton simulation. Snapshot at
t = 45.5 ms. Top left diagram shows the spatial wavefunction density |ψ|2 in
the optical lattice. The sharp peak on the left represents the soliton. The
second peak consists of outcoupled atoms leaving the soliton region. The right
top figure shows the expansion of the wavefunction in Bloch functions. The two
curves shown are the populations in the lowest and in the first excited energy
bands in quasi-momentum space q. The left bottom figure shows the envelope
functions A(x, t) for the Bloch functions, obtained from an inverse FT of the
Bloch expansion and an averaging integration as expressed in eq. (5.77). The
obtained envelope function is used for the numerical fits yielding soliton size
and population. The right bottom shows the phase (complex argument) of the
envelope functions.
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5.10.2 Soliton simulations in 3D

After the simple 1D soliton simulations showed promising qualitative results,
we ran cartesian 2D and 3D simulations of the soliton formation process. As
in 1D, the 2D simulations are not a satisfactory physical description and con-
sequently provided only qualitative results, comparable to the 1D simulations.
3D simulations of the process proved to require unacceptably large program
running times, owing to the large numerical grids required and to the fine scale
dynamics of the soliton formation process.

We have found a solution to these problems, exploiting the cylindrical sym-
metry inherent in the experimental setup. The simulation program has been
adapted accordingly and we have described the details of the implementation
in section 5.3.6. The full 3D problem can thus be treated using only the two
cylindrical coordinates r and z, where the axial z-axis is the direction of the
periodic optical potential, which gives rise to the solitons.

In figure 5.18 we show the spatial representation of a soliton wavefunction
in a 2D computational grid representing r and z in cylindrical symmetry. For
technical reasons explained in section 5.3.6, we use a grid including a negative
radial range. The upper half shows the wavefunction density |Ψ|2, and the lower
half a picture of the spatial distribution of the wavefunction phase. Both plots
use the same colour codes for wavefunction density and phase as introduced in
figure 5.9 on page 131. Because of the inhomogeneous spatial grid resolutions,
the radial axis is shown vertically with a resolution of 32 grid points. The soliton
is prepared in the axial periodic optical lattice, which is shown horizontally with
a grid resolution of 4096 points. A time series of such figures (not printed) shows
the radial excitations due to the preparation process and excess trap population
escaping axially from the soliton region at the centre of the figure.

In figure 5.19 we present the analysis of the spatial wavefunction shown in
figure 5.18. The analysis in cylindrical 3D is largely equivalent to the anal-
ysis shown in figure 5.17 for the 1D case, with the appropriate modifications
discussed in section 5.3.6. The stationary soliton with its flat phase signature
(right bottom figure) can clearly be seen, while the radially excited popula-
tion (green) moves out to the sides. Note the very small amplitude of excited
states in the upper band (right top figure), owing to a largely adiabatic soliton
preparation procedure.

The time series of such analysis frames allowed us to determine the end of
the soliton formation process and to numerically compute the soliton sizes and
populations during the subsequent steady interval. Since the soliton formation
is a rather dynamical process and due to numerical constraints, such as grid
border interference effects, the simulation time is limited. This leads to a certain
margin of error in the computations of soliton sizes and populations. Our results
for the soliton sizes are however in excellent agreement with the theoretical
prediction in equation (5.84), and with the experimental observations in [24].
Figure 5.20 shows our results; the errorbars represent the worst-case error and
the solid black line is the theoretical prediction. A publication of our results is
in preparation [169].
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Figure 5.18: Wavefunction density (top half) and phase (bottom half) in a
quasi-3D soliton simulation with cylindrical symmetry (for clarity, r ranges
from [−R,R] in this figure). Snapshot at t = 22.6 ms showing a bright gap
soliton near the axial grid centre (z axis shown horizontally, r axis vertically)
and radially excited excess population moving away to the sides. The initial
population is N = 900 atoms, the periodic potential depth is 1.3 Erec, the full
radial range is 15 µm, the full axial range 100 µm, numerical grid resolution is
32x4096 discrete points.

Figure 5.19: Processing the data of a quasi-3D soliton simulation in cylindrical
symmetry (spatial data shown in figure 5.18). Snapshot at t=22.6 ms. Top
left diagram shows the spatial wavefunction density |ψ|2 in the optical lattice
resolved into three populated transversal harmonic oscillator states. The left
bottom shows the envelope functions with sech() fit (dotted). The right top
graph shows transversal excitations and (on top at the “second level”) the same
for population in the excited Bloch band. The bottom right shows the phases
of the envelope functions.
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Figure 5.20: Scaling properties of an atomic gap soliton. The data shown
in this figure was obtained from numerical simulations in cylindrical symmetry.
The scaling theoretically predicted in equation (5.84) is represented by the solid
(black) line. Our simulation results and the experimental observations in [24]
are in agreement with the theoretical prediction.
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Chapter 6

Conclusions and Outlook

In the first part of this thesis we developed a numerical simulation program for
the evaporative cooling of atoms and molecules in harmonic and linear traps.
Particular attention was paid to the requirements for the trapping of molecular
species in quadrupole traps, such as oxygen.

In this context, we have additionally done a full ab initio computation of
an oxygen-oxygen collision potential energy surface, in order to improve the
presently best known data. This was done to create a more solid base for the
scattering theory of this molecular species, and to provide improved tempera-
ture dependent collision cross section data for the evaporative cooling simula-
tions.

The numerical simulation program, which we have developed for the mod-
elling of evaporative cooling (chapter 4), significantly improves on existing
DSMC techniques. It is now possible to simulate the evaporation process
through many orders of magnitude of particle loss and temperature change.
Our algorithm is able to recursively adapt to strong density inhomogeneities
and thus allows simulations of strongly peaked density distributions, as for
example those occurring in magnetic quadrupole traps.

We have done simulations investigating the viability of magnetic trapping
and evaporative cooling of molecular oxygen. We found that due to its large
inelastic scattering cross section at temperatures, which may realistically be
reached using cryogenic buffer gas cooling and trap loading techniques, it is
unlikely that sufficient population numbers for runaway evaporation can be
reached. Under ideal, fictitious assumptions, runaway evaporation with de-
creasing inelastic rates can be achieved, however, and we show that the problem
of Majorana trap loss at the centre of linear quadrupole magnetic traps can be
overcome by optimized evaporative cooling ramps. This effect only becomes
significant for temperatures below approximately 0.5 mK.

The lack of optical cooling methods, and thus a lack of high trap densities
at the start of the evaporative cooling runs, is likely, however, to preclude
cooling long before quantum degeneracy can be reached. Another important
point, which casts doubt on the prospect of oxygen trapping and cooling, is
the strong sensitivity of this species’ inelastic collision cross section to external
magnetic fields. A model proposed by Volpi [54] shows that trap depths for

151



152 CHAPTER 6. CONCLUSIONS AND OUTLOOK

efficient cooling must be unrealistically shallow. The inelastic rate approaches
the elastic rate for magnetic field magnitudes larger than only 53 G, which
translates to a trap depth of merely 7 mK.

We further modelled combined optical and magnetic trapping methods,
which have yielded experimental results with problematic particle species. We
could show in our simulations, how the use of an optical “dimple” trap potential
can be used to achieve a peak phase space density increase of several orders of
magnitude in harmonic and in linear traps. At the same time, this technique
can be used to alleviate the Majorana loss effects at the quadrupole trap centre
by using a dimple potential, which is slightly off centre.

In its current form, owing to its heritage describing gas flows, the adapted
DSMC algorithm also allows the simulation of systems other than simple par-
ticle traps. Presently, cold particle research strives towards the production of
cold samples of heavier and heavier molecules and particles for purposes of
higher precision measurements. One possible application of our simulation pro-
gram, as suggested by Prof. Foot, could be the modelling of a system, in which
ultra-heavy molecules, or even biological particles, with narrow velocity spreads
in supersonic jets, are translationally cooled by a counterpropagating flow of
lightweight ultra-cold atoms.

In the second half of the present work we have developed a highly uni-
versal simulation program for BEC clouds at zero temperature. The program
achieves good performance on present day standard computer hardware, even
for simulations on large three-dimensional grids. We have applied this simula-
tion program to many different problems. The code is modular and extensible,
and the author hopes that in the future it will be used, adapted and extended
even further by others.

We have simulated the collective excitation modes of a central vortex state
in BEC clouds in close collaboration with the Oxford University experimental
workgroup of Prof. Foot at the Clarendon Labs, and we have demonstrated
the experimentally observed resonant excitation of vortex tilting modes in our
numerical model. A joint publication on this topic has already been submitted
for publication [23].

Further work went into simulations of BEC expansion after the release of
the BEC cloud from the trap for the purpose of destructive imaging. This is a
problem of great interest for experimental work groups and poses challenges for
the numerical simulation algorithms, due to the rapid dynamics of the cloud
expansion. Further projects simulating eccentric TOP trap effects, and methods
using multi-state effects and Berry’s phase for the direct production of vortices
in TOP traps, have been started. We can conclude that the rich dynamics of
the TOP magnetic trap still has potential for interesting new observations and
the development of new methods, all of which can be modelled using the BEC
simulation program developed in the present work.

We have conducted numerical simulations of BEC clouds trapped in optical
lattices. Specific preparation techniques allow the creation of bright solitons
at the band gap under these conditions. We have numerically verified recent
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experimental results [24] in 1D simulations. Additionally, we have developed
3D simulations for the vortex preparation experiments, which required several
large changes in the simulation program to tackle the computational complexity
posed by the highly dynamical effects and the very high grid resolutions required
for such simulations. We completed 3D simulations, exploiting the inherent
cylindrical symmetry of the soliton preparation experiments, and we have been
able to quantitatively reproduce the experimental results.

Future work using the DSMC particle simulation program, which was de-
veloped in the first part of this thesis, may extend its capabilities into the
ultra-low temperature regime, where effects of quantum degeneracy at finite
temperatures lead to the BEC phase transition. Our BEC simulation program
may be used to investigate clouds in potentials other than the typical harmonic
or TOP traps in the future. Presently, we are planning to use the simulation
program for further work in the area of soliton formation and behaviour.
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Appendix A

Data analysis and
visualisation techniques

Data acquisition from the individual computer simulation runs for all parts of
this thesis was mainly text based. Console output of data is very simple to im-
plement and can be quickly adapted to the problems immediately at hand. By
defining several debug levels the programs are as verbose as needed during the
several stages of program development, debugging and production use. Saved
program console output was subsequently processed by PERL scripts to extract
and convert data into a format appropriate for higher level visualisation tools,
such as Octave.

A.1 Jpeg images and film sequences

In many situations immediate visual output and interpretation of the data is
more useful than the console textfile approach. Visual representation also allows
efficient storage of what would else become a too large amount of raw data.

For these purposes a C++ program class to create Jpeg image files was de-
veloped. Using this class, one dimensional data, such as |Ψ|2 densities or wave-
function phases from rapid 1D simulations, can be plotted as simple curves. 2D
data can be potted as colour-coded image maps using different colour schemes
for wavefunction densities and phases. Data from 3D simulations, which when
saved in detail for later analysis will quickly fill up even the largest of to-
days hard disk drives, can be represented by three separate perpendicular slices
through the volume using the 2D colourmaps as for genuine 2D data.

Jpeg images can subsequently turned into file sequences by an encoder pro-
gram. Under Linux we have used the now somewhat antiquated mpeg encode
[84] program to compile mpg films. A more flexible option is the modern
“MPlayer” free software package, which comprises an encoder for various pop-
ular formats, including the highly compressed DivX.
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A.2 3D methods

At times it could not be avoided to use large amounts of storage for detailed
analysis of the data representing 3D BEC time evolution series. For a truly three
dimensional representation we use the iso-density approach: A large data-set
representing a wavefunction at a specific simulation time is read into memory.
Then a surface of constant |Ψ|2 density is calculated and then plotted and
shaded within a wire-mesh cube. For added effect the surface colour can be
chosen according to the wavefunction phase at each individual surface point.

One program able to do this satisfactorily is Matlab. However, Matlab is
very slow at this and not available on many computers due to restrictive and
expensive licensing.

A more generic software called the “waveexplorer” was developed by us
for this purpose. It uses the OpenGL hardware accelerated graphics rendering
infrastructure, which is available in all present “3D” graphics cards and is also
available on the Linux architecture favoured by us. The program allows skipping
through the wavefunction time series saved in the large simulation data output
files, while dynamically shifting the iso-surface density and “flying” through
the scene in a flight-simulator fashion using keyboard and mouse. The program
reuses parts of the free GPLIGC [170] program and makes use of the universal
GTS grid library [84]. The waveexplorer program also allows the output of Jpeg
file image sequences and thus the making of films.

monitoring
ProgressJpeg

Images

ConfigurationSimulation program

Detailed data
(large volume)

Console/file
Text data output

PERL
Scripts

Other programs
and scripts

Data
analysis

analysis
Detailed

Figure A.1: Schematic flow diagram of the computer simulation and data anal-
ysis process. Image and console data output are most useful for development
and parameter range scanning purposes. Detailed data is needed mostly for
production use.



Appendix B

Angular momentum coupling
calculations using
Mathematica

We have developed a program to calculate the Clebsch-Gordan coupling coeffi-
cients and channels for several angular momenta in the Mathematica computer
algebra system. This was helpful studying and understanding the literature
on scattering theory, such as [37, 31]. While angular momentum coupling of
j1 and j2 with projection m1 and m2 (with m1 + m2 = m) leads to coupled
representation j and m in a unitary transform

ψjm =
∑

m1m2

C(j1j2j;m1m2m)ψj1m1ψj2m2 , (B.1)

the inverse expansion [30]

ψj1m1ψj2m−m1 =
∑

j

C(j1j2j;m1,m−m1)ψjm (B.2)

is more instructive in identifying exit channels in inelastic collisions with specific
incoming channels.

With substitution rules, Mathematica allows the calculation of almost ar-
bitrarily complicated stacked multi-component coupling problems, such as the
one encountered in the (O2)2 scattering problem. The substitution rules are ap-
plied recursively and repetitively by the Mathematica system, until no further
simplification is possible.

The following is a verbatim copy of the Mathematica replacement rules,
defining a |j,m, “comment”〉 “Ket” structure (the comment helps identifying
the resulting components in the coupled representation in more complex prob-
lems).
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prod = {Ket[j1_, m1_, comment1_] ** Ket[j2_, m2_, comment2_] ->

Sum[CG[{j1, m1}, {j2, m2}, {j, m1 + m2}]*

Ket[j, m1 + m2, "(" <> comment1 <> "," <> comment2 <> ")"],

{j, Abs[j1 - j2], j1 + j2, 1}]};

addprod = {p_ ** (q_ + r_) -> p ** q + p ** r,

(p_ + q_) ** r_ -> p ** r + q ** r};

calccg = {CG[{j1_, m1_}, {j2_, m2_}, {j_, m_}]

-> ClebschGordan[{j1, m1}, {j2, m2}, {j, m}]};

null = {0 ** p_ -> 0, p_ ** 0 -> 0};

one = {1 ** p_ -> p, p_ ** 1 -> p, -1 ** p_ -> -p, p_ ** (-1) -> -p};

scalprod = {Ket[j_, m_, comment_]c_ -> c ** Ket[j, m, comment],

(m_ ** Ket[j_, m_, comment_]) c_ -> c m ** Ket[j, m, comment],

c_ ** m_ ** Ket[p_, q_, comment_] -> c m ** Ket[p, q, comment],

1 ** Ket[p_, q_, comment1_]/c_ ** Ket[l_, m_, comment2_]

-> 1/c ** Ket[p, q, comment1] ** Ket[l, m, comment2]};

factor = {Ket[p_, q_, comment_]c_ -> c ** Ket[p, q, comment],

(x_ ** Ket[p_, q_, comment_])z_ -> x z Ket[p, q, comment],

(Ket[p_, q_, comment_] ** x_)z_ -> x z Ket[p, q, comment]};

sumup = {c_ ** Ket[p_, q_, comment1_] + d_ ** Ket[p_, q_, comment1_]

-> (c + d) ** Ket[p, q, comment1]};

productify = {c_ ** Ket[p_, q_, comment_] -> c Ket[p, q, comment]};

reduce = Flatten[{prod, addprod, calccg, null, one, scalprod, factor}];

The following two functions do the work, applying the defined rules. While
“vadd[ ]” results in analytical expressions, “givenumbers[ ]” will give the cou-
pling coefficients numerically.

vadd[x_] := Module[{tmp}, tmp = x //. reduce;

tmp = tmp //. sumup;

tmp = Simplify[tmp]]

givenumbers[x_] := Module[{tmp}, tmp = x //. sumup;

tmp = tmp //. productify;

N[tmp]]

The following is a very simple example coupling two angular momenta |j1,m1〉 =
|1, 1〉 and |j2,m2〉 = |1,−1〉, resulting in probabilities (square of the coefficients)
for |j,m〉 of 50% |1, 0〉, 33.3% |0, 0〉 and 16.6% |2, 0〉.

In := vadd[Ket[1, 1, "L1"] ** Ket[1, -1, "L2"]]

Out:= 1/Sqrt[2] ** Ket[1, 0, (L1,L2)] + 1/Sqrt[3] ** Ket[0, 0, (L1,L2)]

+ 1/Sqrt[6] ** Ket[2, 0, (L1,L2)]



Appendix C

Natural Atomic Units

In literature on quantum chemistry, natural atomic units are widely used. How
these arise can be seen if we consider the Schrödinger equation of the hydrogen
atom:

[

− ~
2

2me
∇2 − e2

4πε0r

]

φ = Eφ (C.1)

We can obtain a dimensionless equation by casting the problem into dimen-
sionless, often called “computational”, units E ′ = E/Ea and r′ = r/λ. In
dimensionless units, the Schrödinger equation of the hydrogen atom will take
the following simple form:

[

−1

2
∇′2 − 1

r′

]

φ = E′φ. (C.2)

We can obtain this shape from the original equation by replacing x, y, z →
λx′, λy′, λz′.

[

− ~
2

2meλ2
∇′2 − e2

4πε0λr′

]

φ′ = Eφ′. (C.3)

If we now choose λ in such a way that

~
2

mλ2
=

e2

4πε0
= Ea, (C.4)

we can factor out the constants in front of the expressions for kinetic and
potential energy. This results in Ea being a natural atomic unit of energy
called the Hartree. For λ we get

λ =
4πε0~

2

mee2
= a0. (C.5)

The scaling factor λ for our dimensionless units is the natural length scale of
the problem, called the Bohr radius a0.
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Physical quantity Conv. factor to SI units Value in SI units

Length a0 5.2918 · 10−11 m
Mass me 9.1095 · 10−31 kg
Charge e 1.6022 · 10−19 C
Energy Ea 4.3598 · 10−18 J
Angular momentum ~ 1.0546 · 10−34 Js
Electric dipole moment ea0 8.4784 · 10−30 Cm



Appendix D

Scaling laws for evaporative
cooling

In the theory of evaporative cooling, several system parameters exhibit specific
scaling laws with the particle number N , depending on the type of the trapping
potential

U(r) ∝ rd/δ, (D.1)

where d is the dimensionality, usually d = 3 in real space, and δ determines the
trap type. δ = 3 for linear traps and δ = 3/2 for harmonic traps.

α characterises the dependence of the ensemble temperature T on the par-
ticle number.

α =
Ṫ /T

Ṅ/N
=
d(lnT )

d(lnN)
(D.2)

The following table has been adapted from Ketterle and van Druten [62].

Quantity Symbol Exponent x

Number of particles N 1
Temperature T α
Volume V δα
Particle density n 1− δα
Phase space density D 1− α(δ + 3/2)
Elastic collision rate nσv̄ 1− α(δ − 1/2)
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Appendix E

Memory efficient RK4

The fast and memory efficient Runge-Kutta-4 interaction picture (RK4IP) al-
gorithm, which was developed for 3D simulations of the GP equation in [132],
comprises the following 19 steps. The following shorthands for the numerical
procedures involved will be used:

• C and the ← symbol stand for copy operations in the direction indicated
by the arrow.

• D, diffusion operation. Executes the diffusion operator.

• N, non-diffusion operation. Executes the N operator, containing trap and
other potentials, gravity and nonlinear particle interaction.

• S, weighted sum operations involving the argument wavefunctions.

Step Assignment operation Operator

1. Ψk ← Ψ C
2. Ψ ← D(Ψ) D
3. Ψi ← Ψ C
4. Ψk ← N(Ψk, t) N
5. Ψk ← D(Ψk) D
6. Ψ ← Ψ + Ψk/6 S
7. Ψk ← Ψk/2 + Ψi S
8. t ← t+ ∆t/2
9. Ψk ← N(Ψk, t) N
10. Ψ ← Ψ + Ψk/3 S
11. Ψk ← Ψk/2 + Ψi S
12. Ψk ← N(Ψk, t) N
13. Ψ ← Ψ + Ψk/3 S
14. Ψk ← Ψk + Ψi S
15. Ψk ← D(Ψk) D
16. Ψ ← D(Ψ) D
17. t ← t+ ∆t/2
18. Ψk ← N(Ψk, t) N
19. Ψ ← Ψ + Ψk/6 S
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Appendix F

Finite difference derivative
operator

For the computation of the radial derivative part of the diffusion operator in
cylindrical symmetry (section 5.3.6) a finite differencing method was used in-
stead of the Fourier transform method because the operator part is not diagonal
in the Fourier picture and can thus not be computed in the usual and precise
way.

Because of the specific shape of our problem, with the cylindrically sym-
metric wavefunction Ψ(r, z, t) rapidly approaching zero at the grid borders in
r, we can use a multi-point central differencing method, which uses the same
number of forward points r and backward points l on the grid relative to the
grid position xi the operator is evaluated at. In general the derivative at xi can
be written as

ψ′(xi) =
1

∆x

r
∑

k=−l

ckψ(xi + k∆x), (F.1)

where k for a central differencing method with l=r runs over the appropri-
ate number of points, which are weighted with coefficients ck according to a
predetermined stencil.

As outlined in [171], these stencils can be determined for any number of
evaluation points nd = l + r + 1 using a set of functions, for which the finite
differencing equation (F.1) needs to yield exact results. Usually the first nd

polynomial functions {p0(x), p1(x), · · · , pnd−1(x)}, with pk(x) = xk, are used.
Expansion of the nth derivative of pk(x) (in our case we are only interested

in the first derivative), written as p
(n)
k (x), gives rise to the following system of

linear equations, from which the stencil c can be calculated:

p(n) = P (l, r)c (F.2)

With

cT = [cl, cl+1, · · · , c0, · · · , cr] and cT = [p
(n)
0 (0), p

(n)
1 (0), · · · , p(n)

nd−1(0)]
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and

P (l, r) =











p0(l) p0(l + 1) · · · p0(r)
p1(l) p0(l + 1) · · · p1(r)

...
...

...
pnd−1(l) pnd−1(l + 1) · · · pnd−1(r)











(F.3)

For simplicity the equations may be evaluated using xi=0 and a unit spacing
of ∆t=1.

While the accuracy of the numerical derivative increases with higher number
of evaluation points nd, we found that seven points yielded excellent results in
all cases. Also see [133] for a discussion of the accuracies of the individual
stencils.

Including the normalisation factor as in equation (F.1), the resulting central
differencing stencils cT are as follows:

nd = 3 : 1
2∆x [−1, 0, 1]

nd = 5 : 1
2∆x [1,−8, 0, 8,−1]

nd = 7 : 1
60∆x [−1, 9,−45, 0, 45,−9, 1] (F.4)

nd = 9 : 1
840∆x [3,−32, 168,−672, 0, 672,−168, 32,−3]

nd = 11 : 1
2520∆x [−2, 25,−150, 600,−2100, 0, 2100,−600, 150,−25, 2]

Solution of the system of linear equations proved to be slow in Mathematica
and impossible for more than nd= 7 points for unknown reasons. A port of the
script to the Maple algebra system [172, 173] solved the problem and yielded
the results for nd= 9, 11.
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[169] J. M. W. Krüger, K.-P. Marzlin, and M. Oberthaler. 2004. In preparation.
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BCA Binary Collision Approximation
BE Bose-Einstein
BEC Bose-Einstein Condensate
BGC Buffergas Cooling
BO Born-Oppenheimer
CAS Complete Active Space
CC Coupled Cluster
CG Clebsch-Gordan
CI Configuration Interaction
CPU Central Processing Unit
DSMC Direct Simulation Monte Carlo
FD Fermi-Dirac
FFT Fast Fourier Transform
FORT Far-off-resonance optical trap
FT Fourier Transform
FWHM Full Width Half Mean
GNU GNU is not Unix
GP Gross-Pitaevskii
GPE Gross-Pitaevskii Equation
GPL General Public License
HF Hartree-Fock
I/O Input/Output
IP Interaction Picture
LCAO Linear Combination of Atomic Orbitals
MB Maxwell-Boltzmann
MD Molecular Dynamics
MO Molecular Orbital
MOT Magneto-Optical Trap
MP2 2nd order Møller-Plesset
MPPT Møller-Plesset Perturbation Theory
NLSE Nonlinear Schrödinger Equation
PES Potential Energy Surface
PRNG Pseudo-Random Number Generator
QC Quantum Chemistry
QED Quantum Electrodynamics
QMC Quantum Monte Carlo
RAM Random Access Memory
RF Radio Frequency
RK4 Runge-Kutta 4th order
RNG Random Number Generator
ROHF Restricted open shell Hartree-Fock
SCF Self-consistent field
TF Thomas-Fermi
TOP Time Orbiting Potential
VDW van der Waals
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