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➤ Suppose a system is in a superposition of excited states and

couples to the vacuum.

➤ Assume that different pathways to the ground state interfere.

☞ Effectively, this can result in a modification of the

spontaneous emission rate.
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Why (diatomic) molecules?

➤ The pathways of orthogonal dipole moments do not interfere.

➤ Electronic dipole moments of the same electronic transition

are parallel for all vibrational quantum numbers.

➤ Parallel dipole moments are not easy to obtain in atoms.

☞ Advantage over atoms.

✌ Modification of the spontaneous emission rate could make

cyclic processes like laser cooling of molecules feasable.
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Coupling to the electromagnetic field
Born-Oppenheimer approximation in molecules

Ψ = ψe(~r;R)χ(R, ϑ, ϕ) = ψe(~r;R)P (R)Φ(ϑ, ϕ)

Interaction Hamiltonian: Hint = (~d+ ~D) ~E

Dipole matrix element

~Mfi =

∫

d3nr d3R ψ∗
ef(~r,R)χ∗

f (
~R)(~d+ ~D)ψei(~r,R)χi(~R)

=

∫

dΩ

∫

dR P ∗
f (R)Φ∗

f (ϑ, ϕ)

~M e
fi(R;ϑ,ϕ)

︷ ︸︸ ︷
( ∫

d3nr ψ∗
ef
~dψei

)

Φi(ϑ, ϕ)Pi(R)

+

∫

d3R χ∗
f
~D χi

∫

d3r ψ∗
efψei

︸ ︷︷ ︸

=0
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The Franck Condon Integral

When ~M e
fi(R0 + x;ϑ, ϕ) ≈ ~M e

fi(R0;ϑ, ϕ):

~Mfi = ffi

∫

dΩ Φ∗
f (ϑ, ϕ) ~M e

fi(R0;ϑ, ϕ)Φi(ϑ, ϕ)
︸ ︷︷ ︸

⇒selection rules of the rotational levels

ffi :=

∫

dR P ∗
f (R)Pi(R) Franck Condon Integral
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Example

The adiabatic potential curves

for the lowest electronic states

of CN . The graph is taken from

A. A. Radzig and B. M. Smir-

nov. Reference Data on Atoms,

Molecules, and Ions. Springer-

Verlag, Berlin, 1985.

µ
µ
µ 0

1
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1
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}

In general possible:

Vibrational levels of the ground

state that are energetically higher

than levels of the first excited state
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The Master Equation
Master equation in the Schrödinger picture:

σ̇(t) = − iLmolσ(t) − TrR([V,
∫ t

0
dτe−iτL0[V ′, |0R〉〈0R|σ(t− τ)]])

~2

V :=V0

∑

~k,s

∑

µ

∑

ν

√
ωka~ks~ε~ks

~dµν |µ〉〈ν| + H.C.

Lmol :=
1

~
[Hmol, · · · ] := [

∑

µ

µ|µ〉〈µ| +
∑

ν

ν|ν〉〈ν|, · · · ]

L0 := Lmol +
∑

~k,s

[ω~ka
†
~ks
a~ks, · · · ]
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The Master Equation (2)

σ̇µAµB
= − i(µA − µB)σµAµB

− |~deg|2
6π2~ε0c3

{∑

µ,ν

(rµν∗
µAνσµµB

+ rµν
µBνσµAµ)

−
∑

ν,ν1

(rν1µB

νµA
+ rνµA∗

ν1µB
)σνν1

}

σ̇νAνB
= − i(νA − νB)σνAνB

− |~deg|2
6π2~ε0c3

{∑

ν,µ

(rνµ∗
νAµσννB

+ rνµ
νBµσνAν)

−
∑

µ,µ1

(rµ1νB

µνA
+ rµνA∗

µ1νB
)σµµ1

}

rµ1ν1

µν := Θ(µ1 − ν1)Θ(µ− ν)f ∗
µνfµ1ν1

(µ1 − ν1)
3
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Maximization at a fixed time point

σ̇νAνB
= −i(νA−νB)σνAνB

+
|~deg|2

6π2~ε0c3
(
∑

µ,µ1

(rµ1νB

µνA
+ rµνA∗

µ1νB
)σµµ1

)

︸ ︷︷ ︸

to be maximized

Assumption: pure state

Goal: maximization of the spontaneous emission rate into one

special lower level

Method: method of Langrangian multipliers
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Maximization 2
Def.:

χµ1

µ := χµ1νB

µνA
:= rµ1νB

µνA
+ rµνA∗

µ1νB

Aussumption:

σµµ1
= cµc

∗
µ1

To be maximized:
∑

µµ1

χµ1

µ σµµ1
+ λ(

∑

µ

σµµ − 1)

Result:
∑

µ

χα
µcµ + λcα = 0
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Results so far
➤ Maximization of the spontaneous emission rate into one

special lower level is possible.

➤ However, calculations are so far only for fixed time.

➤ The effect of maximization depends strongly on the

involved Franck Condon factors.
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Numerical example: CN molecule
Lennard-Jones potential fit.

Relative transition rate:

µ0 → ν0 : 0.56

Σ(µ0 · · ·µ4) → ν0 : 0.94
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Numerical example: N2 -like molecule

Relative transition rate:

µ0 → ν0 : 4.0 × 10−5

Σ(µ0 · · · µ9) → ν0 : 1.5 × 10−2
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Num. example: Harmonic potentials
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A simple picture

Condition for maximum:
∑

µ

χα
µcµ + λcα = 0

with σαα1
= cαc

∗
α1

χµ1

µ =rµ1ν0

µν0
+ rµν0∗

µ1ν0

ωeg

∆ω

ωeg � ∆ω : χµ1

µ ≈ 2ω3
egfµ1ν0

f ∗
µν0

∧
= 2ω3

eg|fν0
〉〈fν0

|

This is true for real Franck Condon integrals.
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Discussion of the simple picture
In this limit it is very easy to determine the optimal superposition:

The coefficients of the superposition are simply the

overlap (scalar product) of the upper nuclear radial

wave function of concern (µ = 0 . . . n) and the lower

nuclear radial wave function (here ν0).

cα ∝ fαν0

and the maximal spontaneous emission rate is

Γmax =
|~deg|2

3ε0π~2c3
ω3

eg

(∑

α

|fαν0
|2

)
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Time evolution
Problem: The different energies of the upper vibrational

eigenstates cause the eigenfunctions to de-phase and do

destroy the superposition.

Does this weaken the effect?

The population of ν0 of CN for t ∈ (0s, 5 × 10−14s). Superposition of 5 upper levels.
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Time evolution (2)

0 1e-13 2e-13 3e-13 4e-13 5e-13
time [s]

0

0.0002

0.0004

0.0006

0.0008
pr

ob
ab

ili
ty

Level 0
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Level 4

The population of level ν0 of CN for t ∈ (0s, 5 × 10−13s). The straight lines stand

for the population if the molecule initially is in state µ ∈ [0, 4]. In this case, there is no

interference and the time evolution of the population is just like 1 − e
−Γ

µ

ν0
t.
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Summary
➤ Modification of the spontaneous emission rate is possible

because electronic dipole moments are parallel.

➤ A method to calculate the optimal superposition has been

found.

➤ The maximal spontaneous emission rate depends crucially

on the involved Franck Condon factors.

➤ Unfortunately the energy separation of the levels of the

excited electronic state leads to de-phasing and does

destroy the superposition.

➤ The effect is limited by a time τvib ≈ π/∆ω = π~/∆E.

After this time the spontaneous emission rate starts to rise

again due to de-phasing.
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Improvements?
➤ Shallow adiabatic excited state potential could diminish the

de-phasing.

➤ Coupling of strong lasers:

• Pulsed laser with very high repetition rate

(≈ 10141/sec)

• Strong continuous wave laser

➤ Only use two upper levels and make use of the periodic

change of the spontaneous emission rate.
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