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Motivation iii

Motivation

Jedes angeregte Atom oder Molekül emittiert früher oder später spontan ein
Photon. Stimmt das? Bei der Betrachtung eines anderen Vorgangs, der Ab-
sorption eines Photons, stellt sich überraschenderweise heraus, daß es Zustände
gibt, die Photonen einer bestimmten Mode nicht absorbieren, obwohl sie
dies aufgrund der Wellenlänge und der Auswahlregeln eigentlich tun sollten.
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Abbildung 1: Termschema eines Λ Dark States.

Diese Zustände werden Dun-
kelzustände genannt. In Abb.1
ist ein Beispiel eines sol-
chen Zustandes dargestellt.
Ein Atom mit drei Niveaus
wechselwirkt mit zwei Photon-
moden der Frequenzen ν1 und
ν2. Es ist möglich eine Su-
perposition der unteren Eigen-
zustände zu wählen, die unter-

bindet, daß ein Photon absorbiert wird. Dies kann in einer kurzen Rechnung näher
verdeutlicht werden. Für resonante Moden hat der Hamiltonoperator im Wechsel-
wirkungsbild folgende Gestalt:

Hint = Ω1|a〉〈b|+ Ω2|a〉〈c|+ Ω∗
1|b〉〈a|+ Ω∗

2|c〉〈a|. (1)

Setzt man den Zustand

|Ψdark〉 ∝ Ω1|c〉 − Ω2|b〉 (2)

in die zugehörige Schrödingergleichung ein, so wird ersichtlich, daß kein Photon
absorbiert wird:

Hint|Ψdark〉 = 0. (3)

Das Drei-Niveau-Atom bleibt trotz Wechselwirkung in der Superposition und wird
nicht angeregt. Die beiden möglichen Übergänge interferieren miteinander destruktiv
und verhindern so die Absortion.

Gibt es auf der anderen Seite einen angeregten Zustand, der spontane Emission
unterbindet? Spontane Emission ist, im Gegensatz zu der oben diskutierten Absorp-
tion, kein kohärenter Vorgang und sie kann in sehr viele Moden erfolgen - nämlich
in alle Moden des Vakuums. Es ist daher möglich die spontane Emissionsrate zu
verändern, indem man die Modendichte ändert. Dies kann in Kavitäten (engl.: cavi-
ties) erreicht werden. Eine Kavität ist ein Raum der von beinahe ideal spiegelnden
Flächen umgeben ist. Diese Flächen stellen Randbedingungen an das Photonen-Feld,
die die Modenanzahl begrenzen.
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Läßt sich auch die spontane Emission im freien Raum verändern? In den letz-
ten Jahren ist in einigen theoretischen Arbeiten die Möglichkeit diskutiert wor-
den, spontane Emission in Atomen sowie in Molekülen durch Überlagerung von
angeregten Zuständen und durch die Verwendung von Lasern zu modifizieren
(unter anderem in [Zhu and Scully(1996)], [Agarwal(1997)], [Berman(1998)] und
[Ficek and Swain(2001)]).
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Abbildung 2: V - Schema eines 3-Niveau Atoms im Va-
kuum.

In Abb.2 is ein einfaches Drei-
Niveau-Atom dargestellt, daß
mit dem Vakuum wechsel-
wirkt. Der wesentliche Unter-
schied zu Abb.1 ist hier, daß
~k1 und ~k2 zwei beliebige Wel-
lenvektoren darstellen. Sogar
wenn nur resonante Moden be-
trachtet werden, wechselwir-
ken viele Photonen-Moden mit
dem Atom. Die Unterdrückung
von spontaner Emission ist daher viel schwieriger als die Unterdrückung der Ab-
sorption. Später (in Kapitel 3) wird sich herausstellen, daß Übergänge mit ortho-
gonalen Dipolmomenten nicht benutzt werden können, um die spontane Emission
zu verändern. Übergänge mit parallelen oder antiparallelen Dipolmomenten können
jedoch destruktiv oder konstruktiv miteinander interferieren und so die spontane
Emissionsrate verringern oder verstärken. Aus diesem Grund behandeln alle oben
genannten Veröffentlichungen ausschließlich Übergänge mit parallelen oder antipar-
allelen Dipolmomenten.

Diese Bedingung ist im allgemeinen nicht erfüllt für entartete Eigenzustände in Ato-
men.1 Xia und seine Gruppe [Xia et al.(1996)] versuchten dieses Problem zu umge-
hen, indem sie gemischte Rydberg Zustände von N2 benutzten, die durch Spin-Orbit
Wechselwirkung überlagert sind und parallele oder antiparallele Dipolübergänge bei
einer niedrigen Energieaufspaltung haben sollten. Sie beobachteten experimentell ei-
ne Unterdrückung der spontanen Emission aus dieser Überlagerung in einen tieferen
Zustand. Leider konnte dieses Experiment in einem späteren Versuch von Li et al.
[Li et al.(2000)] nicht wiederholt werden, und es bestehen Zweifel ob die Ergebnisse
von Xia et al. stimmen.

In der vorliegenden Diplomarbeit werden elektronische Übergänge zwischen Super-
positionen von Vibrationsniveaus des elektronisch angeregten Zustandes und Vibra-
tionszuständen des elektronischen Grundzustandes untersucht. Die Vibration der
Kerne verursacht eine Aufspaltung der elektronischen Zustände in viele Vibrati-
onszustände. Die elektronischen Dipolmomente zwischen den Vibrationszuständen
sind parallel, wenn sie den gleichen elektronischen Übergang haben. In dieser Arbeit
werden deshalb nur zwei elektronische Zustände betrachtet, der Grundzustand und
der erste angeregte elektronische Zustand. Vibrationsniveaus sind außerdem interes-
sant, weil zwischen Vibrationszuständen keine Auswahlregeln existieren. Spontane

1Die Phasen von Zustände mit unterschiedlicher Energie entwickeln sich unterschiedlich. Dies

zerstört im Normalfall die gewünschte Superposition.
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Emission kann in viele tiefere Vibrationsniveaus erfolgen. Falls es möglich wäre, die
spontane Emission in ein bestimmtes Vibrationsniveau zu verstärken und in alle
anderen zu unterbinden, würde sich das entsprechende Molekül in dieser Hinsicht
wie ein Atom verhalten. Experimentelle Methoden wie z.B. Laserkühlen könnten
benutzt werden. Soweit mir bekannt ist, ist die Verstärkung der spontanen Emis-
sionrate durch Überlagerung von Vibrationsniveaus des angeregten elektronischen
Zustandes bisher nicht untersucht worden.

Aufbau der Arbeit

Das nächste Kapitel versorgt den Leser mit Hintergrundwissen über Mastergleichun-
gen und zweiatomige Moleküle. Im ersten Teil 2.1 wird die Mastergleichung eines
Systems (wie z.B. eines Atoms oder eines Moleküls) hergeleitet, das mit dem Vaku-
um wechselwirkt. Mastergleichungen spielen eine zentrale Rolle in meiner Diplom-
arbeit. Dieser Teil von Kapitel 2 trägt daher zum Verständnis meiner Diplomarbeit
wesentlich bei.

Der zweite Teil des Kapitels vermittelt Grundwissen über zweiatomige Moleküle.
Vibrationsniveaus werden dabei etwas tiefgreifender behandelt. Ein Leser, der
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Abbildung 3: Der energetisch höher liegende Zustand
besteht aus einer Überlagerung der drei |µ〉 Zustände.
Die Übergänge dieser drei Niveaus nach |ν0〉 inter-
ferieren. Das gleiche gilt für Übergänge nach |ν1〉.
Gibt es eine Superposition der |µ〉 Zustände, die die
Übergangswahrscheinlichkeit nach |ν0〉 erhöhen und
nach |ν1〉 erniedrigen?

mit zweiatomigen Molekülen
vertraut ist, kann diesen Teil
überspringen.

Das nächste Kapitel, der
Hauptteil meiner Diplom-
arbeit, benutzt die oben
erwähnte Mastergleichung
um die Bewegungsgleichung
des Dichteoperators von
Molekülen mit zwei elektroni-
schen Zuständen, die jeweils in
Vibrationsniveaus aufgespal-
ten sind, zu untersuchen. In
Abb.1.3 sieht man das Term-
schema eines zweiatomigen
Moleküls mit drei Vibrati-
onszuständen im angeregten
elektronischen Zustand und
zwei Vibrationszuständen im
elektronischen Grundzustand.
In der Wirklichkeit ist die An-
zahl der Vibrationszustände
meist erheblich höher2.

Die so erhaltene Mastergleichung wird dann dazu verwendet, eine Methode zu fin-
den, die spontane Emissionsrate in ein bestimmtes unteres Vibrationsniveaus zu

210, 20 oder mehr
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erhöhen, und die spontane Emission in andere zu unterdrücken. Das Molekül wird
dazu in eine Überlagerung von Vibrationszuständen des angeregten elektronischen
Zustandes gebracht, und dann wird versucht die Rate der spontanen Emission zu
maximieren. Die Rate soll also nur zu einem bestimmen Zeitpunkt maximal sein.
Die Zeitenwicklung des Dichteoperator wird bis dahin nicht betrachtet. Der letzte
Teil dieses Kapitels behandelt schließlich die Zeitentwicklung des Dichteoperator für
große Zeiten verglichen mit der Schwingungsdauer der Kerne.

Das Ergebnis von Kapitel 3 wird sein, daß die Maximierung stark von den
Übergangswahrscheinlichkeiten zwischen einzelnen Vibrationsniveaus abhängt.3

Wenn viele solche Übergänge in die Rechnung mit eingehen, ist es schwierig zu
verstehen warum die spontane Emissionsrate in manchen Molekülen verstärkt wer-
den kann und in anderen nicht. Leider haben Moleküle viele mögliche Übergänge
zwischen Vibrationsniveaus. Aus diesem Grund werden in Kapitel 4 numerische Be-
rechnungen durchgeführt.

Kapitel 5 faßt letztendlich die Ergebnisse zusammen, beleuchtet sie in einem
größerem Zusammenhang und zeigt mögliche Lösungen für die entstanden Probleme
auf.

Im Anhang A wird gezeigt, daß nur extrem starke Laserfelder in der Lage sind, die
spontane Emissionsrate in größerem Rahmen zu ändern. Anhang B führt Super-
operatoren ein und enthält den Liouville Superoperator der in Kapitel 4 verwendet
wird.

3Diese Übergangswahrscheinlichkeiten sind proportional zu sogenannten Franck Condon Fakto-

ren (siehe 2.2).
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There is a theory which states that if ever anybody
discovers exactly what the Universe is for and why
it is here, it will instantly disappear and be replaced
by something even more bizarre and inexplicable.
There is another theory which states that this has
already happened.

Douglas Adams
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Chapter 1

Introduction

1.1 Motivation

Every excited atom or molecule eventually emits spontaneously a photon. Or
does it not? For an opposite and coherent process – the absorption of a pho-
ton – states are known which do not absorb a photon with a special wave vector
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Figure 1.1: Level scheme for a Λ dark state.

even if the energy separa-
tion and dipole selection rules
would facilitate it. These
states are called dark states .
What is meant to be a dark
state can be seen in Fig.1.1 In
this example a three level atom
couples to two photon modes
with frequencies ν1 and ν2. A
superposition of lower levels b

and c can be chosen that prevents the absorption of a photon. This can be shown in
a short calculation. For resonant modes the interaction Hamiltonian of the system
has the following form:

Hint = Ω1|a〉〈b|+ Ω2|a〉〈c|+ Ω∗
1|b〉〈a|+ Ω∗

2|c〉〈a|. (1.1)

It is obvious that in this case the state

|Ψdark〉 ∝ Ω1|c〉 − Ω2|b〉 (1.2)

is the above mentioned superposition that prevents the absorption:

Hint|Ψdark〉 = 0. (1.3)

The three level atom stays in the superposition. No photon will be absorbed. The
coherent trapping occurs due to the destructive quantum interference of the two
transitions.

5



6 CHAPTER 1. INTRODUCTION

Does on the other hand exist an excited state which forbids or enhances spontaneous
emission? Spontaneous emission is, in contrast to the above mentioned absorption,
always related to many modes – the vacuum field. One way of changing the sponta-
neous emission rate is therefore to modify the vacuum by application of boundary
conditions. This is a well proven fact and experimentally confirmed. Cavities can
be used to achieve this. A cavity is a space enclosed by (almost) ideal mirrors. The
boundary conditions of a cavity restricts the number of modes. In this means the
spontaneous emission rate can be reduced.

But it is possible to modify the spontaneous emission in free space? In the last years
several theoretical papers discussed the possibility to modify the spontaneous emis-
sion rate in atoms as well as in molecules by superposition of excited levels and by
coupling laser fields to the atoms or molecules (among others [Zhu and Scully(1996)],
[Agarwal(1997)], [Berman(1998)], and [Ficek and Swain(2001)]). A simple three
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Figure 1.2: V - scheme for a 3 level atom that couples to
the vacuum.

level atom that couples to the
vacuum can be seen in Fig.1.2.
The major difference to Fig.1.1
is that ~k1 and ~k2 are arbi-
trary wave vectors. Even if
only resonant modes are con-
sidered, many modes couple to
the atom. Spontaneous emis-
sion cancellation or suppres-
sion is therefore a much more
complicated task. It will turn
out later (see chapter 3) that transitions with orthogonal dipole moments cannot
interfere in such a way that they change the spontaneous emission rate. Transitions
with parallel or antiparallel dipole moments however can interfere destructively or
constructively and lessen or enhance the transition probability. For this reason all
the above mentioned papers deal with parallel or antiparallel dipole moments.

This requirement is in general not fulfilled in atoms, at least for degenerate energy
levels .1 Xia et al. [Xia et al.(1996)] tried to circumvent this problem by using mixed
Rydberg states of N2 (mixed by spin-orbit interaction) which should have parallel
or anti-parallel dipole moments and a small energy separation. They experimentally
observed spontaneous emission cancellation to a special lower level . Anyhow a later
experiment of Li et al. [Li et al.(2000)] could not confirm these results and casts
doubt on the results of Xia et al.

In my thesis electronic transitions from a superposition of vibrational levels in di-
atomic molecules is discussed. The vibration of the nuclei results in a splitting of
electronic states into several vibrational levels. The corresponding electronic dipole
moments are all parallel and the problem of orthogonal dipole moments does not
occur. Vibrational levels are also interesting because for electronic transitions be-
tween vibrational levels no strict selection rules exist. Spontaneous emission into

1Levels with different energy eigenvalues start to de-phase very fast and the intended superpo-

sition is destroyed.
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many lower vibrational levels is possible. If it were possible to enhance the sponta-
neous emission rate to one special lower level and suppress the spontaneous emission
to the other levels, the molecule would in this respect behave like an atom. Exper-
imental methods that are used in the case of atoms, like for example laser cooling
could be used. To my knowledge the enhancement or suppression of spontaneous
emission by using a superposition of vibrational levels has not been discussed so far.

1.2 Thesis outline

The next chapter provides the reader with some necessary background knowledge.
In section 2.1 master equations are introduced and the master equation of a system
(like an atom or a molecule) interacting with the vacuum is derived. This master
equation plays a central role in my thesis and I therefore strongly recommend to
read this section.

The second part of the next chapter deals with diatomic molecules. Basic infor-
mation about diatomic molecules is given. Vibrational levels are discussed in more
detail. The experienced reader may skip this section.

The main part of my thesis uses the above mentioned master equation

µ
µ
µ 0
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2

ν
ν0

1

Figure 1.3: The upper state is in a superposition of three
|µ〉-levels. The transitions of these three levels to |ν0〉
interfere. The same is true for the transitions to |ν1〉.
Is there, for example, a superposition that favors the
transition to |ν0〉 over the transition to |ν1〉?

to derive the equation of mo-
tion for the density operator
of molecules with two elec-
tronic states each splitted into
several vibrational levels. In
Fig.1.3 the level scheme of a
diatomic molecule with three
vibrational levels of the upper
electronic state and two vibra-
tional levels of the lower elec-
tronic state is shown. In real-
ity the number of vibrational
levels is in most times much
higher. Often there are 10 or
20 or even more vibrational
states between two electronic
states.

The resulting master equation
is then used to find a method
to maximize the spontaneous
emission rate to one lower vi-

brational level and to suppress the rate to all other levels. The molecule is brought
into a superposition of vibrational levels of the upper electronic state and then the
spontaneous emission rate is tried to be maximized to one lower level. So far the time
evolution of the density matrix is not considered. The last part of the main chapter
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3 discusses the time dependence of the density operator for large times compared
with the vibrational motion of the nuclei.

The outcome of chapter 3 will be that the maximization depends crucially on the
transition probabilities between single vibrational levels.2 If many transitions are in-
cluded into the calculation, it is difficult to understand why the spontaneous emission
rate in some molecules can be modified and in some not. Unfortunately, molecules do
have many possible transitions between vibrational levels. For this reason in chap-
ter 4 numerical calculations were performed to get a better understanding which
molecules are suitable and which molecules are not.

Chapter 5 finally discusses the results in the greater context and points up some
possible solutions for the arised problems.

Appendix A proves that only extremely strong laser fields can change the spon-
taneous emission rate considerably. Appendix B introduces super operators and
provides the Liouville super operator for the time evolution used in chapter 4.

2These transition probabilities are proportional to so called Franck Condon factors (see 2.2).



Chapter 2

Background knowledge

In this chapter master equations are introduced and diatomic molecules are dis-
cussed. A general introduction on quantum optics is not given. Many excellent books
cover this topic. I would like to mention [Loudon(1991)], [Scully and Zubairy(1997)],
[Cohen-Tannoudji et al.(1992)], [Mandel and Wolf(1995)], [Milonni(1995)],
[Cohen-Tannoudji et al.(1989)], and [Walls and Milburn(1995)].

2.1 The master equation approach

In this section a general formalism to derive master equations is introduced. A mas-
ter equation is a differential equation describing the time evolution of a subsystem.
In our case the system includes a molecule and the radiation field that couples to
it. We are concerned with the time development of the molecule states. We are
not interested in the radiation field. The master equation approach provides a use-
ful method to derive the ”equation of motion” for the molecule states in a ”mean”
radiation field.

In the derivation projection operators are used which project the overall density op-
erator on a density operator solely for the radiation (the reservoir ) or on a density
operator only describing the state of the molecule (the subsystem we are interested
in). These operators are applied to the equation describing the time evolution of
the density operator of the combined system. This results in a coupled system of
equations for the time evolution of the subsystem and the reservoir. The trick of the
master equation approach is to formally integrate the time evolution of the reservoir.
By this means the time evolution of the reservoir is eliminated and we have an equa-
tion describing only the time evolution of the states of the molecule. This technique,
which is called Zwanzig’s projection operator technique , is shown in a very compre-
hensive way in [Agarwal(1975)] or in [Mandel and Wolf(1995)]. For a more physical
interpretation of master equations have a look at [Cohen-Tannoudji et al.(1992)].
Because the master equation approach plays an important role in chapter 3, a short
derivation is sketched below.

Let ρ be the density operator characterizing the system consisting of the molecule
and the radiation field. H is the Hamiltonian in the Schrödinger picture. The

9
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Liouville super operator L = 1
~ [H, · · · ] describes the time evolution of the density

operator.

iρ̇ = Lρ (2.1)

Further let P be the time independent super operator projecting ρ on the molecule
states and Q the super operator projecting ρ on the part of ρ which doesn’t belong
to Pρ. These operators have the following properties:

P2 = P Q2 = Q PQ = QP = 0. (2.2)

The reduced density operators 1 are defined as follows:

σM := Pρ σR := Qρ ≡ (1− P)ρ. (2.3)

Here σM stands for the reduced density operator representing the molecule and σR

stands for the rest of ρ. A suggestive way of writing this is:

ρ =

(
σM

σR

)
. (2.4)

Now let the projection operators act on (2.1). This results in two coupled differential
equations.

˙σM(t) = −iPL
(
σM(t) + σR(t)

)
(2.5)

σ̇R(t) = −iQL
(
σM(t) + σR(t)

)
(2.6)

So far the result is symmetric in σM and σR. Now the set of equations can be
uncoupled by solving equation (2.6) for σR(t) and inserting it into equation (2.5).

Equation 2.6 can be solved formally with the method of variation of parameters .

σR(t) = Te−iQ
∫ t
0 dt

′L(t
′
)A(t) =: U(0, t)A(t). (2.7)

Here T is the time ordering operator. With this ansatz σ̇R becomes:

σ̇R(t) = −iQL(t)σR(t) + U(0, t)Ȧ(t)
!= −iQL(t)σR(t)− iQL(t)σM(t). (2.8)

1Actually the density operators introduced here are not really reduced, since they belong to a

Hilbert space of the full dimensionality of both the molecule and the radiation. In the literature

the reduced density operators are often defined without the radiation part. σM = |0R〉〈0R|σ. Here

σ is really a reduced density operator of lower dimension. For further details have a look at the end

of this section.
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Solving equation (2.8) for A(t) yields

A(t) = A(0) +
∫ t

0
dτ U(τ, 0)

(
− iQL(τ)σM(τ)

)
. (2.9)

This can be inserted into equation (2.7):

σR(t) = U(0, t)A(0)− iU(0, t)
∫ t

0
dτ U(τ, 0)QL(τ)σM(τ)

= U(0, t)A(0)− iU−1(t, 0)
∫ t

0
dτ U−1(0, τ)QL(τ)σM(τ)

= U(0, t)A(0)− i

∫ t

0
dτ U(τ, t)QL(τ)σM(τ). (2.10)

With the substitution τ → t− τ the last equation becomes:

σR(t) = U(0, t)A(0)− i

∫ t

0
dτ U(t− τ, t)QL(t− τ)σM(t− τ). (2.11)

The constant A(0) can be fixed by the constraint that σR(t = 0) != σR(0). So finally
we get

σR(t) = U(0, t)σR(0)− i

∫ t

0
dτ U(t− τ, t)QL(t− τ)σM(t− τ). (2.12)

The result for σR(t) can now be inserted into equation (2.5):

˙σM(t) = −iPL(t)σM(t)−iPL(t)U(0, t)σR(0)−PL(t)
∫ t

0
dτU(t−τ, t)QL(t−τ)σM(t−τ).

(2.13)

This equation is still exact. No approximations or assumptions were made. In
(2.13) there is no σR(t)-dependence anymore. Equation (2.13) is called Zwanzig’s
generalized master equation . Now let us assume a specific form for L and P. 2

L = LM + LR + LMR P = |0R〉〈0R|TrR (2.14)

LM, LR, and LMR corresponds to HM, HR and HMR in H = HM + HR + HMR.
These are the molecule Hamiltonian, the radiation Hamiltonian and the interaction
Hamiltonian. The choice of P assures that the second term in (2.13) vanishes and
that the reservoir is the vacuum. Furthermore assume

2Here often the notation P = |0R〉〈0R| ⊗ TrR is used.
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LR =
∑

k

ωka
†
kak and LMR is linear in ak and a†k. (2.15)

These assumptions lead to the following useful equations:

[P,LM] = 0 (a) PLR = 0 (b)

PLMRP = 0 (c) QLMP = 0 (d) (2.16)

The first equation (2.16a) is a consequence of the definition of LM. The special
choice of P, LR, and LMR leads to the two next equations (2.16b) and (2.16c). From
[P,LM] = 0 and QP = 0 follows that QLMP = 0. These equations can be used to
simplify equation (2.13):

˙σM(t) = −iLM(t)Pρ(t)−P(LM(t) +LMR(t))
∫ t

0
dτU(t− τ, t)QLMR(t− τ)Pρ(t− τ).

(2.17)

In addition QLMRP = (1− P)LMRP = LMRP. This results in:

˙σM(t) = −iLM(t)Pρ(t)− P(LM(t) + LMR(t))
∫ t

0
dτU(t− τ, t)LMR(t− τ)Pρ(t− τ).

(2.18)

Since [LM, P ] = 0 and PU = 0, the second LM(t) can be removed without changing
the result:

˙σM(t) = −iLM(t)Pρ(t)− PLMR(t)
∫ t

0
dτU(t− τ, t)LMR(t− τ)Pρ(t− τ). (2.19)

So far any simplification was due to the special choice of L and P.To further simplify
equation (2.18) an approximation is used:

U(t− τ, t) = Te−iQ
∫ t

t−τ dt
′
(LM(t

′
)+LR(t

′
)+LMR(t

′
))

is replaced by

U0(t− τ, t) := Te−iQ
∫ t

t−τ dt
′
(LM(t

′
)+LR(t

′
)). (2.20)

This corresponds to the Born approximation . The integral is now of first order in
LMR. Since [Q,LM] = [1 − P,LM] = 0 and [Q,LR] = [1 − P,LR] = 0, U0(t − τ, t)
can be rewritten as

U0(t− τ, t) = QTe−i
∫ t

t−τ dt
′
(LM(t

′
)+LR(t

′
)). (2.21)
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With the help of PLMRQ = PLMR(1 − P) = PLMR the master equation finally
assumes the following form:

˙σM(t) = −iLM(t)σM(t)− PLMR(t)
∫ t

0
dτŨ0(t− τ, t)LMR(t− τ)σM(t− τ) (2.22)

with

Ũ0(t− τ, t) := Te−i
∫ t

t−τ dt
′
(LM(t

′
)+LR(t

′
)). (2.23)

If LM, LR, and LMR are not time dependent, the master equation simplifies to

˙σM(t) = −iLMσM(t)− PLMR

∫ t

0
dτe−i(LM+LR)τLMRσM(t− τ). (2.24)

This equation is used in chapter 3 to derive a master equation for the model molecule
in vacuum. Often the master equation is used in the interaction picture .

˙σI
M ≡ ∂

∂t
(eiL0tσM(t)) = −eiL0tPLMR

∫ t

0
dτe−iL0τLMRσM(t− τ) (2.25)

For the sake of simplicity L0 := LM + LR and H0 := HM + HR is used. With the
help of eiL0tA = ei

H0
~ tAe−i

H0
~ t, this yields:

˙σI
M = −ei

H0
~ tPLMR

∫ t

0
dτe−i

H0
~ τLMRσM(t− τ)ei

H0
~ τe−i

H0
~ t. (2.26)

This finally results in the master equation in the interaction picture 3:

˙σI
M = −Pei

H0
~ tLMRe

−i
H0
~ t

∫ t

0
dτei

H0
~ (t−τ)LMRe

−i
H0
~ (t−τ)ei

H0
~ (t−τ)σM(t− τ)e−i

H0
~ (t−τ)

or

˙σI
M = −PLI

MR(t)
∫ t

0
dτLI

MR(t− τ)σI
M(t− τ). (2.27)

The equation also holds for time dependent LMR. This equation is used in appendix
A.

In all these calculations σM is an operator on the Hilbert space describing the
molecule and the reservoir. Yet the part describing the reservoir is trivial: σM =
|0R〉〈0R|TrRρ = |0R〉〈0R|σ. Here σ really ”lives” on a lower dimensional Hilbert
space, only describing the molecule. Often σ is called the reduced density opera-
tor. σ is used in chapter 3. The |0R〉〈0R|-part in σM is very important, because,
depending where it appears in the commutator, it cancels either ak or a†k in HMR.

3[H0
~ , P] = 0
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2.2 Diatomic Molecules

In this section some basic features of diatomic molecules will be introduced. Chap-
ter 3, the main part of my thesis, deals with vibrational levels of the two low-
est electronic states. Therefore in this section mainly the vibrational structure of
molecular spectra is discussed. The Born-Oppenheimer approximation, the Franck
Condon principle and Franck Condon factors are introduced. For further reading
and background information on diatomic molecules I refer to the books of Haken
[Haken and Wolf(1992)], Herzberg [Herzberg(1950)], Steinfeld [Steinfeld(1993)], and
Hollas [Hollas(1998)]. A more theoretical treatment of diatomic molecules is
given in [Mizushima(1975)]. Spectroscopic data of diatomic molecules can be
found in [Khristenko et al.(1998)], [Radzig and Smirnov(1985)], [Herzberg(1950)],
[Grigoriev and Meilikhov(1997)], and [NIST(2002)].

2.2.1 Spectra of diatomic molecules

The spectrum of a diatomic molecule is simpler than the spectrum of a polyatomic
molecule, but on the other hand much more complicated than the spectrum of an
atom. In a diatomic molecule, the two nuclei can vibrate against each other, or
rotate around the center of mass. If the nuclei were not moving, the spectra of a
diatomic molecule would resemble the spectra of an atom placed in a strong electric
field (Stark effect ). But they do move. The additional degrees of freedom result in
a more complicated spectrum. The spectrum has a threefold structure: electronic,
vibrational, and rotational. The energy contribution of the electronic configuration
is the largest. In a coarse grained view, the spectrum consists of different bands
each located at an electronic eigenvalue. A closer look reveals that these bands
have a vibrational and rotational structure. The rotational motion is coupled to the
vibrational motion, because the inertial tensor depends on the distance between the
two nuclei.

The spectroscopic term of a molecule contains electronic, vibrational and rotational
contributions.

E = Te +Gν + Fν,J (2.28)

Here the term Te is the contribution of the electrons to the energy, Gν the contri-
bution of the vibrational motion of the nuclei, and Fν,J the contribution due to the
rotation of the nuclei.4

In a diatomic molecules electronic transitions between the two lowest electronic
states are typically in the visible or ultra violet regime (ωe = ∆T (e → e

′
)/~ ≈

1015 · · · 1016). The energy difference between two neighboring vibrational states is
often approximately one or two orders of magnitude smaller than the above men-
tioned energy difference ∆Te. This means ωvib = ∆G(ν → ν

′
)/~ ≈ 1013 − 1014 and

4The quantum number ν stands for a vibrational level and the number J is the quantum number

of the angular momentum of the nuclei.
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the corresponding photons are often in the infrared regime. The spectrum of two
rotational levels within the same rotational band5 is typically in the microwave or far
infrared (ωrot = ∆F (J → J

′
)/~ ≈ 1011). For the spontaneous emission this means,

since Γ ∝ ω3, that Γe ≈ 103 Γvib ≈ 1011 Γrot. Thus, in a model with spontaneous
emission between two electronic levels, spontaneous emission between rotational lev-
els of the same band can be neglected. This also holds for vibrational transitions in
the same electronic level, but with less accuracy.

2.2.2 The Born-Oppenheimer approximation

The Born-Oppenheimer approximation assumes that the wave function of the
molecule is separable into nuclear and electronic parts. The Hamiltonian for di-
atomic molecules looks like: 6

H = − ~2

2me

∑
i

∆i −
∑
A

~2

2mA
∆A −

∑
A,i

ZAe
2

4πε0rAi
+
Z1Z2e

2

4πε0R
+
∑
i>j

e2

rij
. (2.29)

The index i stands for the electrons and the index A = 1, 2 for the two nuclei. R
denotes the distance between the two nuclei. rAi = |~ri− ~RA| stands for the distance
between the ith electron and the Ath nucleus. Using the ansatz

Ψ = ψe(~r, ~R)χ(~R) (2.30)

the Schrödinger equation becomes

χ
{
− ~2

2me

∑
i

∆i −
∑
A,i

ZAe
2

4πε0rAi
+
∑
i>j

e2

rij

}
ψe + ψe

{
−
∑
A

~2

2mA
∆A +

Z1Z2e
2

4πε0R
}
χ

−
∑
A

~2

mA
(∇Aψe)∇Aχ−

∑
A

~2

2mA
χ∆Aψe︸ ︷︷ ︸

X: will be neglected

= Etotalχψe.

(2.31)

Assuming for the time being that X can be neglected, this results in two differential
equations.

5i.e. they have the same vibrational eigenvalue
6omitting spin and hyperfine structure
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( kinetic energy of el.︷ ︸︸ ︷
− ~2

2me

∑
i

∆i −
∑
A,i

ZAe
2

4πε0|~ri − ~RA|︸ ︷︷ ︸
el.-nucl. attract.

el.-el. repulsion︷ ︸︸ ︷
+
∑
i>j

e2

rij

)
ψe = W (RA)ψe (2.32)

( kinetic energy of nucl.︷ ︸︸ ︷
−
∑
A

~2

2mA
∆A +

Z1Z2e
2

4πε0R︸ ︷︷ ︸
nucl.-nucl. repuls.

energy of the el.︷ ︸︸ ︷
+W (RA)

︸ ︷︷ ︸
effective potential V (R)

)
χ = Etotalχ. (2.33)

In equation (2.32) the transformation ~ri → ~ri+ ~R1 reveals thatW really only depends
on the internuclear distance vector ~R := ~R2− ~R1 and not on the two coordinates ~R1

and ~R2. The resulting Hamiltonian of equation (2.32) is invariant under rotations
around the internuclear axis:

− ~2

2me

∑
i

∆i −
∑

i

Z1e
2

4πε0|~ri|
−
∑

i

Z2e
2

4πε0|~ri − ~R|
+
∑
i>j

e2

rij
. (2.34)

When the coordinate system is chosen in which ~R = (0, 0, R), then it is obvious that
the above Hamiltonian only depends on R. The energy W (R) of the electrons is
therefore calculated in the coordinate system with fixed nuclei.7

In the derivation of the two equations (2.32) and (2.33) the following approximation
has been made:

∣∣−∑
A

~2

mA
(∇Aψe)∇Aχ−

∑
A

~2

2mA
χ∆Aψe

∣∣�W (R) / Etotal. (2.35)

It is possible to obtain a rough estimate for the order of error be made by neglecting
(2.35). The electron wave function depends on the relative coordinate ~r − ~R. This
means that ∆Aψe ≈ ∆iψe. Therefore ~2

2mA
∆Aψe ≈ me

mA

~2

2me
∆iψe ≈ me

mA
W (R). The

last estimate is true because the kinetic energy of an electron is of the order of W (R).
Think for example of the virial theorem in classical mechanics. It states that the
average kinetic energy is half the total energy in a 1

r potential.

The first term can be estimated by the following approximations:∣∣∣~∇Aψe√
mA

∣∣∣ ≈ ∣∣∣√2meW (R)
√
mA

∣∣∣ and
∣∣∣~∇Aχ√

mA

∣∣∣ ≈ ∣∣∣√2mAWnucl.(RA)
√
mA

∣∣∣. (2.36)

In a classical gas of two types of particles (nuclei and electrons),
√

2mAWnucl. ≈√
2meW (R) would hold due to Dalton’s law of partial pressures. So it is at least
7The fact that W(R) is expressed in the coordinate system with fixed positions for the nuclei

results later in the selection rules for the angular momenta of the nuclei (see (2.49)).
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plausible to some extend that ~2

mA
(∇Aψe)∇Aχ is also of the order of me

mA
W (R). The

argumentation was in no way exact, but it is possible to gain the same results using
expectation values for the above neglected terms.

The Born-Oppenheimer approximation therefore neglects terms of order me
mA

/
5 10−4. The worst case is H2. The heavier the molecule, the more justified is
the approximation.

For given W (R) equation (2.33) therefore describes the motion of the nuclei in an
effective potential. Because the mass of the electrons is much smaller than the
mass of the nuclei, the nuclei feel a ”time averaged” electron potential. In first
approximation the effective potential can be assumed to be harmonic around the
equilibrium internuclear distance R̄. In the literature the corresponding harmonic
oscillator eigenfrequency is given to describe the vibrational structure of a given
electronic state.8

The effective potential depends only on the distance R between the two particles.

V (R) :=
Z1Z2e

2

4πε0R
+W (R) ≈ 1

2
mω2(R− R̄)2 + V (R̄). (2.37)

In the harmonic approximation the reduced mass m := m1m2
m1+m2

was used. With the
help of the relative coordinate ~R and using the ansatz χ(~R) = P (R)Φ(ϑ, ϕ), the
relative motion can be roughly described by the following equation:9

{
− ~2∂

2mR2∂R

(
R2 ∂

∂R

)
+

~L2

2mR2
+ V (R)

}
P (R)Φ(ϑ, ϕ) = EtotalP (R)Φ(ϑ, ϕ). (2.38)

This equation looks like the Hamilton equation for an electron in the H atom with
a general potential10 instead of the coulomb interaction. It is now possible to use
the same formalism. From hydrogen we know that ~L2 can only assume 2L + 1
discrete values ~L(L + 1). It is therefore possible to get a differential equation
only depending on R with L as an parameter. Usually, the vibrational motion is
faster than the rotational motion. This means that a lot of vibrations occur during
one period. A mean moment of inertia , depending only on the time-averaged
internuclear distance11, can be assumed. With the help of this approximation and
the harmonic approximation, the total energy can be written as

Etotal = V (R̄) + ~ω(ν +
1
2
) +

~2J(J + 1)
2Θ(R̄)

. (2.39)

Here ω is the eigenfrequency of the potential in the harmonic approximation. R̄ is
the equilibrium internuclear distance and Θ(R̄) the mean moment of inertia.

8Often anharmonic constants are also given to further specify the potential.
9 Here the Laplacian ∆ is written in spherical coordinates.

10a radial potential
11In the literature often the equilibrium distance is used. Strictly speaking, the time-averaged

and the equilibrium internuclear distance need not be the same, but for most potentials they should

not differ much.
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2.2.3 Coupling to the electromagnetic field

The coupling of the electromagnetic field to a diatomic molecule can be described
by the following interaction Hamiltonian:

Hint = (~d+ ~D) ~E. (2.40)

Here ~d is the electronic dipole moment and ~D the dipole moment of the nucleus.
The latter can be written as12

~D =
m1Q2 −m2Q1

m1 +m2

~R = m
(Q2

m2
− Q1

m1

)
~R. (2.41)

So in the case of homonuclear molecules , the nuclear dipole moment is zero. The
electronic dipole moment is

~d =
∑

n

e~rn. (2.42)

In the Born-Oppenheimer approximation (see 2.2.2), the wave function can be writ-
ten as a product of two wave functions. In addition, the nuclear wave function is
the product of two wave functions P (R) and Φ(ϑ, ϕ).

Ψ = ψe(~r;R)P (R)Φ(ϑ, ϕ)︸ ︷︷ ︸
χ(~R)

. (2.43)

The first wave function is the electronic wave function. The function depends on R
parametrically. The second wave function only depends on the internuclear distance
R. The third function is describing the angular dependence of the wave function. 13

The probability of a transition between two different electronic states in the dipole
approximation is proportional to | ~Mfi|2, where

~Mfi =
∫

d3nr d3R ψ∗ef(~r,R)χ∗f (~R)(~d+ ~D)ψei(~r,R)χi(~R)

=
∫

dΩ
∫

dR P ∗
f (R)Φ∗

f (ϑ, ϕ)

~Me
fi(R)︷ ︸︸ ︷( ∫

d~r ψ∗ef ~dψei

)
Φi(ϑ, ϕ)Pi(R)

+
∫

d3R χ∗f
~D χi

∫
d3r ψ∗efψei︸ ︷︷ ︸

=0

. (2.44)

Because transitions between two different electronic levels are considered, the second
part in (2.44) cancels due to the orthogonality of the ψes.

12m is the reduced mass of the two nuclei.
13Assuming a fast vibrational motion compared with the rotational motion (see previous section).
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The value of ~M e
fi(R) is calculated in the coordinate system in which the nuclei are

fixed. On the other hand the calculation in (2.44) is done in the lab frame. It is
easy to express ~M e

fi(R) in the lab frame, when the electronic dipole moment points
in the direction of the internuclear axis

R̂ :=

 sinϑ cosϕ
sinϑ sinϕ

cosϑ

 . (2.45)

In this special case, ~M e
fi(R) can be calculated easily:

~M e
fi(R) = R̂| ~M e

fi(R)|. (2.46)

For the dipole matrix element this means:

~Mfi =
∫

dΩ Φ∗
f (ϑ, ϕ) R̂ Φi(ϑ, ϕ)

∫
dR P ∗

f (R)Pi(R) | ~M e
fi(R)|. (2.47)

The operator R̂ is a vector operator. It satisfies the commutation relation

[Li, Rj ] = i~εijkRk. (2.48)

The integral ∫
dΩ Φ∗

f (ϑ, ϕ) R̂ Φi(ϑ, ϕ)

is only non zero for

∆L = ±1

∆M = 0,±1. (2.49)

These are the usual selection rules. See for example [Cohen-Tannoudji et al.(1977)]
for the derivation of the these rules.

If we assume furthermore that the R dependence of M e
fi(R) is small, it can be taken

out of the integral. We obtain:

~Mfi = | ~M e
fi|
∫

dΩ Φ∗
f (ϑ, ϕ) R̂ Φi(ϑ, ϕ)

∫
dR P ∗

f (R)Pi(R)

= ffi | ~M e
fi|
∫

dΩ Φ∗
f (ϑ, ϕ) R̂ Φi(ϑ, ϕ). (2.50)

Here ffi is the so called Franck Condon integral or Franck Condon factor .

ffi :=
∫

dR P ∗
f (R)P (R)i. (2.51)
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In the literature often F = |ffi|2 is defined as the Franck Condon factor 14. Never-
theless, in this thesis the Franck Condon factor is defined as above. In chapter 3 I
do not consider rotational levels. Thus the calculations become easier. The above
mentioned selection rule should in most times make sure that the results do not
differ qualitatively from the correct calculations with rotational levels.

2.2.4 The Franck Condon principle

In equation (2.51) the Franck Condon factor was introduced. But what is the phys-
ical meaning of this factor? The best way, to understand this, is to look at a picture
(Fig. 2.1).

Figure 2.1: Eigenfunctions of different potentials. The overlap between upper and lower wave
functions are the Franck Condon integrals. In the first two pictures all integrals including
the lower ground state are quite small. The last picture shows two identical potentials. In
this case the Franck Condon integrals can be expressed with the help of a unity matrix:
fµν = δµν .

The Franck Condon factor is the inner product of two wave functions. One is the
vibrational nuclear wave function Pi(R) of the upper electronic state, the other
belongs to the lower state. If we again adopt the classical picture, it is obvious that
the ”reduced particle” stays most of its time at the turning points, because there
its velocity is not very high. Except for the vibrational ground state, this is also
true in quantum mechanics for oscillator-like potentials. This means for example,
that most likely a transition between a vibrational upper state and the vibrational
ground state occurs, when the center of the ground state and one turning point of
the upper state coincide. This rule is called Franck Condon principle .

Nevertheless, throughout this thesis the Franck Condon factors are calculated in the
correct quantum mechanical way. The classical picture cannot work in the context of
this thesis, since superpositions of excited vibrational wave functions are considered.

14Due to the fact that the transition probability is proportional to |ffi|2
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Figure 2.2: The poten-
tial energy curves of the
two lowest lying elec-
tronic states of NaH .
The shown vibrational
levels are based on cal-
culations. Taken from
[Zemke(1984)]. Figure 2.3: The low lying states of N2 , N+

2 , and N−2 . Taken
from [Radzig and Smirnov(1985)].

2.2.5 Examples, remarks, and notational conventions

Continuous states

In the real world, two different types of potentials can occur. Either the dissociation
energy of the ground state is greater or less than the energy of the lowest excited
state.(see Fig. 2.4 and Fig. 2.5) In the first case no continuous spectra is observed.
A finite number of ground state levels lies below the excited states. In the second
case, however, a transition to the continuum is possible. In this case the two atoms
become separated. An example for such a molecule can be seen in Fig. 2.2.

Throughout my thesis only molecules with discrete emission spectra are considered.
Examples can be found in Fig. 2.3(N2), Fig. 2.7(OH), and Fig. 4.8(CN). In OH
most upper vibrational levels have a non-zero transition probability to the contin-
uum. Therefore OH is not the best choice for a superposition of several upper
vibrational levels.
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Some remarks on electronic levels

There are two principal approaches to derive the electronic levels of a diatomic
molecule. Either the molecule is in first approximation treated as two atoms (sepa-
rated atom approach ) or the molecule is considered as one large atom (united atom
approach ). Correlation diagrams can be constructed in which the atomic orbitals
of the united atom are correlated through the orbitals of the molecule with those of
the separated atom (see for example [Haken and Wolf(1992)]).

To calculate the wave function of the molecule again two methods are mainly used.
One is the valence bond technique , the other is the molecular orbital technique
(MO). The first method starts with the atoms totally separated and brings them
then to the equilibrium distance. There the nuclei and the electrons are allowed
to interact. The second theory uses the so called LCAO - method. LCAO stands
for linear combination of atomic orbitals . Two atomic orbitals together yield two
molecular orbitals one with higher the other with lower energy .

Figure 2.4:
Two adiabatic
potentials. It is
possible that the
molecule ends up
in a continuous
state when it
spontaneously
emits a photon.

Figure 2.5:
Two adiabatic
potentials. The
molecule can-
not dissociate
by spontaneous
emission. Figure 2.6: The formation of MOs from 1s, 2s,

and 2p AOs. Taken from [Hollas(1998)].

The molecular orbitals with higher energy are called antibonding states and are
labeled by an asterix *. The antibonding states have a rather low electron density
between the nuclei. The repulsion between the two positively charged nuclei is
screened only weakly by the electrons (see Fig. 2.6). In homonuclear molecules
antibonding states are often asymmetric to inversion. Namely in simplest LCAO
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theory, the bonding and antibonding states can be written as15

Ψbind ∝ Ψ1(~r1) + Ψ2(~r2)

Ψanti ∝ Ψ1(~r1)−Ψ2(~r2). (2.52)

In this approximation it becomes clear that antibonding states are asymmetric and
bonding states are symmetric to inversion. In homonuclear molecules symmetric

Figure 2.7: Adiabatic potentials of the electronic ground
state and the first excited state of OH . Taken from
[Luque and Crosley(1998)].

states are labeled by g and
asymmetric states by u. In
hetero-nuclear molecules these
labels cannot be used. To fur-
ther specify the symmetry, the
superscript + is added if the
state is symmetric under re-
flection at a plane through the
two nuclei. The symbol −
stands for the corresponding
antisymmetric state.

As mentioned before, the
molecule resembles an atom
placed in a strong electric field
(Stark effect).16 Unless the
spin orbit coupling is large, as
would be the case if at least
one of the nuclei had a high
charge, the electrostatic field
uncouples the ~l and ~s vectors
of the electrons. ~l and ~s pre-
cess independently around the
internuclear axis. Therefore ~l is not a good quantum number anymore. But the
component of the angular momentum along the internuclear axis is an eigenvalue.
It is defined in the following form:

λ = |ml| = 0, 1, 2, · · · , l (2.53)

Therefore, all MOs with λ > 0 are doubly degenerate. Small Greek letters denote
the angular momentum of an orbital: σ, π, δ, correspond to λ = 0, 1, 2, for example.

These molecular orbitals are filled with electrons as in the case of atoms. In filled
orbitals, the angular momenta of the electrons add up to zero. The angular momenta
and spins of the remaining electrons are in general nonzero and interact with each
other. If ~l and ~s are weakly coupled, a good approximation is the following: All

15 Ψ1 and Ψ2 represent the atom wave functions. This approach can be found in many textbooks,

for example in [Hollas(1998)].
16In the frame in which the nuclei rest. The electronic dipole matrix element ~Me

fi(R) is calculated

in this frame (see 2.2.3).
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angular momenta are coupled to give a resultant ~Le and all spins couple to ~S.
The state itself is described by capital Greek letters Σ, Π, ∆, · · · , representing
Λ :=

∑
λ = 0, 1, 2, · · · . The number Ω := |Λ + Σ̃| is the quantum number of the

total electronic angular momentum.17

These quantum numbers in the MO framework are used like the corresponding
quantum numbers in atoms to describe the electronic state of a molecule. The
notation is the following:18

2S+1ΛΣ̃+Λ. (2.54)

For example, the term symbol 4Π− 1
2

stands for Λ = 1, S = 3/2, and Σ̃ = −3/2.

Another notational convention is often used for low lying electronic states:

The electronic ground state is labeled X and higher states of the same multiplicity
are called A, B, C, ... in order of increasing energy. States of different multiplicity
are called a, b, c, ... (see [Hollas(1998)] page 312).

17Here Σ̃ = S, S − 1, · · · ,−S is used as the quantum number of S in the unfilled orbital. In the

literature this quantity is often labeled Σ.
18For example see [Hollas(1998)] page 311.



Chapter 3

The model

In this chapter spontaneous emission in a molecule is discussed. My model expects
the molecule to be in its two lowest electronic states and includes the vibrational
levels for both states. For reasonable temperatures the assumption that only the
vibrational levels of the two lowest electronic states are populated is justified quite
well.1 In section 3.1 the master equation in vacuum is derived. In the derivation
it is first assumed that all vibrational states of the ground state of the molecule
lie energetically below the vibrational states of the excited state. Then in section
3.2 this constraint is removed. In later sections the master equation in the Born-
Oppenheimer approximation is introduced. In the last two parts of this chapter it
is discussed whether a superposition of upper states can enhance the spontaneous
emission rate at the time t = 0. Finally, the time evolution of the population of this
special vibrational level of the ground state is discussed.

3.1 Master equation of a system with two distinct sets

of eigenstates

The derivation of the master equation starts with the Hamiltonian in the rotating
wave approximation . The correct way would be to apply the rotating wave approxi-
mation to the master equation. The application of the rotating wave approximation
on the Hamiltonian results in a small frequency shift which is negligible in our case,
since we are mainly interested in the decay of the system. Further details concerning
this frequency shift are discussed in [Agarwal(1975)].

In the Schrödinger picture the time evolution of the reduced density operator σM of
the molecule is given by the master equation (2.24).2 Equation (2.24) describes the
interaction of a system with the vacuum. (For the derivation see 2.1). In this case

1In the thermodynamic equilibrium Eeg ≈ kBT holds. Therefore for T < 103K very few molecules

are in higher states. Eeg is the energy separation of the electronic ground state and the first electronic

state.
2Here σM is still an operator acting on the radiation field. For this reason σ in σM =: |0R〉〈0R|σ

is used from now on. σ only acts on the molecule. (See also 2.1.)

25
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the system is a molecule with vibrational levels for the electronic ground state e and
the first excited state g:

σ̇(t) = −iLmolσ(t)− 1
~2

TrR([V,
∫ t

0
dτe−iτL0 [V ′, |0R〉〈0R|σ(t− τ)]]) (3.1)

with3

Lmol :=
1
~
[Hmol, · · · ] := [

∑
µ

µ|µ〉〈µ|+
∑

ν

ν|ν〉〈ν|, · · · ] (3.2)

L0 := Lmol +
∑
~k,s

ω~k
a†~ks

a~ks
, · · · ] (3.3)

V := V0

∑
~k,s

∑
µ

∑
ν

√
ωka~ks

~ε~ks
~dµν |µ〉〈ν|+ H.C. (3.4)

V ′ := V0

∑
~k1,s1

∑
µ1

∑
ν1

√
ω~k1

a~k1s1
~ε~k1s1

~dµ1ν1 |µ1〉〈ν1|+ H.C. (3.5)

V0 :=
√

~
2ε0V

. (3.6)

Here |µ〉 is a vibrational state in the excited electronical level e and |ν〉 is a vibrational
state in the electronic ground state g. Both include the electronic wavefunction as
well. This definition of |µ〉 and |ν〉 is used throughout this thesis. µ and ν stand
for the frequencies of the associated vibrational excitations. Often µ and ν are also
used as indices.4 ~dµν is the dipole matrix element between level µ and level ν. The
subscript R stands for radiation.5

It is necessary to attach more importance to the rotating wave approximation than
it is usually done. As can be seen in Fig. 3.1, is is possible that the energy of |ν〉
states is greater than the the energy of |µ〉 states. The rotating wave approximation
on the other hand states that a photon is created when the molecule loses energy
and a photon is destroyed when the molecule gains energy. The fact that the states
are still arbitrary forbids therefore to assume that a µ → ν transition is associated
with the creation of a photon. If µ < ν, a photon is destroyed instead. The same
problem arises of course the other way around. All the same, the rotating wave
approximation can be written in a nice way. The trick is simply to distinguish the
two cases µ > ν and µ < ν. The above expression (equation (3.4) and (3.5)) for the
interaction potential V assumed implicitly µ > ν. Since µ and ν are still arbitrary,
it is possible to simply exchange µ and ν in V . The resulting interaction potential,
let us call it Vµ↔ν , then includes the condition µ < ν. A simple way of writing the
true interaction Hamiltonian in the rotating wave approximation for arbitrary µ and
ν is therefore:

3H.C. stands for ”hermitian conjugated”.
4For example, instead of writing σnµnµ1

, the short hand notation σµµ1 is used.
5Later, quantities like Rµ1ν1

µν and rµ1ν1
µν are introduced. These quantities have nothing to do with

the index R.
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Figure 3.1: Example: The potentials for the electronic ground state and the first excited
state. On left are the eigenvalues of the |ν〉 states and on the right are the eigenvalues of
the |µ〉 states shown. It is obvious that in general not always µ > ν. In this example the
Franck Condon factors are all very close to zero.

Varbitrary = Θ(µ− ν)V + Θ(ν − µ)Vµ↔ν . (3.7)

Instead of V and V
′

the interaction Hamiltonians Varbitrary and V
′
arbitrary must be

used in (3.1), if the constraint µ > ν does not apply.

Nevertheless, it is a good thing to associate the creation of a photon with the tran-
sition µ→ ν. The arbitrary choice of µ > ν or µ < ν is simply confusing. Therefore
from now on it is assumed that

Assumption for the time being: µ > ν. (3.8)

Since (3.1) is linear in V and V ′ the resulting master equation can be easily gener-
alized later. This is also the reason why V

′
contains primed variables.6 Of course,

simply renaming the variables does not change the interaction Hamiltonian in any
way, but in this way it is easy to use the linearity of the Hamiltonian later.

But now the master equation for the case µ > ν is derived. Recalling the form of
(3.1)

σ̇(t) = −iLmolσ(t)− 1
~2

TrR([V,
∫ t

0
dτe−iτL0 [V ′, |0R〉〈0R|σ(t− τ)]]),

it must be stressed, that e−iτL0 is applied to the commutator on the right and not
only to V

′
, namely,

σ̇(t) = −iLmolσ(t)− 1
~2

TrR([
∑
~k

∑
s

∑
µ

∑
ν

ωk~ε~ks
a~ks

~dµν |µ〉〈ν|+ H.C.,
∫ t

0
dτ(e−iτ

H0
~

[
∑
~k1

∑
s1

∑
µ1

∑
ν1

ε~k1s1
ak1s1

~dµ1ν1 |µ1〉〈ν1|+ H.C., |0R〉〈0R|σ(t− τ)] eiτ
H0
~ )]). (3.9)

6This will become apparent in section 3.2.
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The trace TrR of the radiation field in the Fock basis is:

TrRA :=
∑
n,~k,s

〈n,~k, s|A|n,~k, s〉. (3.10)

If there are not as many creation operators a†~ks
as there are annihilation operators

a~ks
in A, the trace is zero. All terms with ~k 6= ~k1 or s 6= s1 become therefore zero.7

The fourfold sum over ~k, ~k1, s, and s1 can be simplified to a sum over only ~k and s.

This twofold sum can be simplified even further. With the help of a|0〉 = 0 and
〈µ|ν1〉 = 〈µ1|ν〉 = 0 8 the equation can be simplified to the following form:

σ̇(t) = −iLmolσ(t)− V 2
0

~2
TrR

{ ∑
µ,ν,µ1,ν1

(
+
∑
~ks

(
ωk~ε~ks

a~ks
~dµν |µ〉〈ν|

∫ t

0
dτ(e−iτ

H0
~ ~ε∗~ks

a†~ks
~d∗µ1ν1

|ν1〉〈µ1| |0R〉〈0R|σ(t− τ)eiτ
H0
~ )
)

−
∑
~ks

(
ωk~ε

∗
~ks
a†~ks

~d∗µν |ν〉〈µ|
∫ t

0
dτ(e−iτ

H0
~ |0R〉〈0R|σ(t− τ)~ε~ks

a~ks
~dµ1ν1 |µ1〉〈ν1|eiτ

H0
~ )
)

−
( ∫ t

0
dτ
∑
~ks

ωk(e−iτ
H0
~ ~ε∗~ks

a†~ks
~d∗µ1ν1

|ν1〉〈µ1| |0R〉〈0R|σ(t− τ)eiτ
H0
~ )~ε~ks

a~ks
~dµν |µ〉〈ν|

)
+
( ∫ t

0
dτ
∑
~ks

ωk(e−iτ
H0
~ |0R〉〈0R|σ(t− τ)~ε~ks

a~ks
~dµ1ν1 |µ1〉〈ν1|eiτ

H0
~ )~ε∗~ks

a†~ks
~d∗µν |ν〉〈µ|

))}
.

(3.11)

Let us calculate the trace now. The projector |0R〉〈0R| simplifies the trace consid-
erably. Because never two a†~ks

s or a~ks
s appear9, all parts of the trace including

n = 2 or more photons is zero. A closer look reveals that for the first and the last
addend only 〈0,~k, s|R · · · |0,~k, s〉R remains. For the second and the third addend
〈1,~k, s|R · · · |1,~k, s〉R is the only part of the trace that does not cancel. This results
in:

7If for example A includes a~ks and a†~k1s1
and k 6= k1 or s 6= s1, then different modes are destroyed

and created. The resulting Fock states are orthogonal.
8Remember: |µ〉 and |ν〉 include the electronic parts of the wave functions!
9which means that never two photons of the same kind are destroyed or created.
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σ̇(t) = −iLmolσ(t)− V 2
0

~2

{ ∑
µ,ν,µ1,ν1

(
+
∑
~ks

(
ωk~ε~ks

~dµν |µ〉〈ν|
∫ t

0
dτ(e−iτ( 1

~ Hmol+ωk)~ε∗~ks
~d∗µ1ν1

|ν1〉〈µ1| σ(t− τ)ei
τ
~ Hmol)

)
−
∑
~ks

(
ωk~ε

∗
~ks
~d∗µν |ν〉〈µ|

∫ t

0
dτ(e−i τ

~ Hmolσ(t− τ)~ε~ks
~dµ1ν1 |µ1〉〈ν1|eiτ( 1

~ Hmol+ωk))
)

−
( ∫ t

0
dτ
∑
~ks

ωk(e−iτ( 1
~ Hmol+ωk)~ε∗~ks

~d∗µ1ν1
|ν1〉〈µ1| σ(t− τ)ei

τ
~ Hmol)~ε~ks

~dµν |µ〉〈ν|
)

+
( ∫ t

0
dτ
∑
~ks

ωk(e−i τ
~ Hmolσ(t− τ)~ε~ks

~dµ1ν1 |µ1〉〈ν1|eiτ( 1
~ Hmol+ωk))~ε∗~ks

~d∗µν |ν〉〈µ|
))}

.

(3.12)

Now it is time to use the Markov approximation to simplify the result. In the Markov
approximation the time evolution of σ is dominated by Hmol.

σ(t− τ) ≈ eiτ
Hmol

~ σ(t)e−iτ
Hmol

~ . (3.13)

In addition the Markov approximation includes that the upper limit in the time
integral goes to infinity. This yields

σ̇(t) =− iLmolσ(t)− V 2
0

~2

{ ∑
µ,ν,µ1,ν1

(
+
∑
~ks

(
ωk~ε~ks

~dµν |µ〉〈ν|
∫ t

0
dτ(e−iτ(ν+ωk)~ε∗~ks

~d∗µ1ν1
|ν1〉〈µ1| eiτµ1)σ(t− τ)

)
−
∑
~ks

(
ωk~ε

∗
~ks
~d∗µν |ν〉〈µ|

∫ t

0
dτ(σ(t− τ)e−iτµ1~ε~ks

~dµ1ν1 |µ1〉〈ν1|eiτ(ν1+ωk))
)

−
( ∫ t

0
dτ
∑
~ks

ωk(e−iτ(ν1+ωk)~ε∗~ks
~d∗µ1ν1

|ν1〉〈µ1| eiτµ1σ(t− τ))~ε~ks
~dµν |µ〉〈ν|

)
+
( ∫ t

0
dτ
∑
~ks

ωk(σ(t− τ)e−iτµ1~ε~ks
~dµ1ν1 |µ1〉〈ν1|eiτ(ν+ωk))~ε∗~ks

~d∗µν |ν〉〈µ|
))}

.

(3.14)

To further simplify the equation, the orthogonality of the wave functions can be
used.10

10like 〈ν1|ν〉 = δν1ν
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σ̇(t) =− iLmolσ(t)− V 2
0

~2

∑
µ,µ1,ν

(∑
~k,s

∫ t

0
dτωk~ε~ks

~dµν~ε
∗
~ks
~d∗µ1νe

−iτ(ωk−(µ1−ν))
)
|µ〉〈µ1|σ(t)

+
∑

µ,µ1,ν,ν1

(∑
~k,s

∫ t

0
dτωk~ε

∗
~ks
~d∗µν~ε~ks

~dµ1ν1e
iτ(ωk−(µ1−ν1))

)
|ν〉〈µ|σ(t)|µ1〉〈ν1|

+
∑

µ,µ1,ν,ν1

(∫ t

0
dτ
∑
~k,s

ωk~ε
∗
~ks
~d∗µ1ν1

~ε~ks
~dµνe

−iτ(ωk−(µ1−ν1))
)
|ν1〉〈µ1|σ(t)|µ〉〈ν|

−
∑

µ,µ1,ν

(∫ t

0
dτ
∑
~k,s

ωk~ε~ks
~dµ1ν~ε

∗
~ks
~d∗µνe

iτ(ωk−(µ1−ν))
)
σ(t)|µ1〉〈µ|. (3.15)

Now it is time to sum over s. For two general operators the following equation holds:

∑
s

( ~A~εs)( ~B~ε∗s) = AiBj(δij −
kikj

k2
). (3.16)

This is true, because11

~ε1 ◦ ~ε∗1 + ~ε2 ◦ ~ε∗2 + k̂ ◦ k̂ = 1 (3.17)

and

( ~A~εs)( ~B~ε∗s) = ( ~A~εs)(~ε∗s ~B) = ~AT(~εs ◦ ~ε∗s) ~B. (3.18)

The sum over ~k can be rewritten as:

∑
~k

=
∫

dΩ
∑

k

. (3.19)

The integral in (3.19) can also be integrated.

∫
dΩ(δij −

kikj

k2
) =

8π
3
δij . (3.20)

This can be verified by simply inserting the components of

~k =

 sinϑ cosϕ
sinϑ sinϕ

cosϑ

 (3.21)

into the above quotient (kikj)/k2 and integrating the left hand side of equation
(3.20).

11Here ◦ stands for the outer product.
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Altogether this yields:

∑
~k

∑
s

( ~A~εs)( ~B~ε∗s) =
8π
3

∑
k

AiBjδij . (3.22)

From now on k is not a vector anymore, but a real number. Using this equation to
simplify (3.15) results in

σ̇(t) =− iLmolσ(t)− 8πV 2
0

3~2

∑
µ,µ1,ν

(∑
k

∫ t

0
dτωk

~dµν
~d∗µ1νe

−iτ(ωk−(µ1−ν))
)
|µ〉〈µ1|σ(t)

+
∑

µ,µ1,ν,ν1

(∑
k

∫ t

0
dτωk

~d∗µν
~dµ1ν1e

iτ(ωk−(µ1−ν1))
)
|ν〉〈µ|σ(t)|µ1〉〈ν1|

+
∑

µ,µ1,ν,ν1

(∫ t

0
dτ
∑

k

ωk
~d∗µ1ν1

~dµνe
−iτ(ωk−(µ1−ν1))

)
|ν1〉〈µ1|σ(t)|µ〉〈ν|

−
∑

µ,µ1,ν

(∫ t

0
dτ
∑

k

ωk
~dµ1ν

~d∗µνe
iτ(ωk−(µ1−ν))

)
σ(t)|µ1〉〈µ|. (3.23)

At this point it becomes clear that for orthogonal dipole moments the above equation
decouples. In the case of orthogonal dipole moments only terms with µ = µ1 and
ν = ν1 would remain. The equation would be totally uncoupled and all modes would
just decay exponentially. Luckily, in our model the electronic dipole moments are
all parallel. Using the definition of Rµ1ν1

µν below, the following master equation is
obtained:

σ̇(t) = − i
~
[H0, σ]−

∑
µ,µ1,ν

Rµ1ν∗
µν |µ〉〈µ1|σ(t) +

∑
µ,µ1,ν,ν1

Rµ1ν1
µν |ν〉〈µ|σ(t)|µ1〉〈ν1|

+
∑

µ,µ1,ν,ν1

Rµ1ν1∗
µν |ν1〉〈µ1|σ(t)|µ〉〈ν| −

∑
µ,µ1,ν

Rµ1ν
µν σ(t)|µ1〉〈µ|. (3.24)

Here Rµ1ν1
µν is defined by (assuming that the order of the k- and the time integral

can be changed)

Rµ1ν1
µν := Θ(µ− ν)Θ(µ1 − ν1)

8πV 2
0

3~2

∫ ∞

0
dτ
∑

k

ωk
~d∗µν

~dµ1ν1e
iτ(ωk−(µ1−ν1)). (3.25)

The Heaviside function Θ is used to stress that in the derivation the constraint
µ > ν was used for all levels. In this way the definition of Rµ1ν1

µν can than later also
be used for the general case.

In the case of vacuum modes the sum over k can be calculated:

∑
k

−→ V

(2πc)3

∫ ∞

0
dωω2. (3.26)
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and therefore

Rµ1ν1
µν = Θ(µ− ν)Θ(µ1 − ν1)

1
6π2~ε0c3

∫ ∞

0
dτ

∫ ∞

0
dωω3~d∗µν

~dµ1ν1e
iτ(ω−(µ1−ν1)).

(3.27)

To evaluate the ω-integral it is necessary to go to a new variable:

ω′ = ω − (µ1 − ν1). (3.28)

Rµ1ν1
µν = Θ(µ− ν)Θ(µ1 − ν1)

1
6π2~ε0c3

~d∗µν
~dµ1ν1

∫ ∞

−(µ1−ν1)
dω′ω′3

∫ ∞

0
dτeiτω′︸ ︷︷ ︸∫∞

0 dτeiτω′=πδ(ω′)+i P
ω′

.

(3.29)

The imaginary term with the principal value P of the above integral can be included
into the energy of the molecule.

Rµ1ν1
µν = Θ(µ− ν)Θ(µ1 − ν1)

1
6π2~ε0c3

~d∗µν
~dµ1ν1Θ(µ1 − ν1)(µ1 − ν1)3. (3.30)

The Heaviside function Θ(µ1 − ν1) that comes from the δ function does not yield
any more information.

The final result is:

σ̇(t) = − i
~
[H0, σ]−

∑
µ,µ1,ν

Rµ1ν∗
µν |µ〉〈µ1|σ(t) +

∑
µ,µ1,ν,ν1

Rµ1ν1
µν |ν〉〈µ|σ(t)|µ1〉〈ν1|

+
∑

µ,µ1,ν,ν1

Rµ1ν1∗
µν |ν1〉〈µ1|σ(t)|µ〉〈ν| −

∑
µ,µ1,ν

Rµ1ν
µν σ(t)|µ1〉〈µ| (3.31)

Rµ1ν1
µν := Θ(µ− ν)Θ(µ1 − ν1)

(µ1 − ν1)3

6π2~ε0c3
~d∗µν

~dµ1ν1 (3.32)

This is the master equation for a system with eigenstates |µ〉 and |ν〉 with µ > ν.
For arbitrary energy levels µ, ν it also describes correctly the spontaneous emission
rate in a system at time t = 0 with the molecule initially being in a superposition of
µ levels. This is true because no transitions ν → µ are possible, when the ν levels
are not populated.

3.2 The master equation without constraint µ > ν

As discussed at the beginning of section 3.1, it is possible to generalize the hitherto
result to the case µ < ν OR µ > ν. 12 To obtain the general master equation , V
and V

′
must be replaced by

12OR being the logic OR.
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Varbitrary = Θ(µ− ν)V + Θ(ν − µ)Vµ↔ν

V
′
arbitrary = Θ(µ1 − ν1)V

′
+ Θ(ν1 − µ1)V

′
µ1↔ν1

. (3.33)

The definition of (3.32) can be used:

Rµ1ν1
µν := Θ(µ− ν)Θ(µ1 − ν1)

(µ1 − ν1)3

6π2~ε0c3
~d∗µν

~dµ1ν1 .

It is important to understand that, if the constraint µ > ν is dropped, for example
Rν1µ1

νµ is not necessarily zero, because Rν1µ1
νµ is13

Rν1µ1
νµ = Θ(ν − µ)Θ(ν1 − µ1)

(ν1 − µ1)3

6π2~ε0c3
~d∗νµ

~dν1µ1 . (3.34)

The Heaviside functions Θ(ν−µ) or Θ(ν1−µ1) are not necessarily zero in this case.

Equation (3.31) becomes14

σ̇(t) = − i

~
[H0, σ]−

∑
µ,µ1,ν

Rµ1ν∗
µν |µ〉〈µ1|σ(t) +

∑
µ,µ1,ν,ν1

Rµ1ν1
µν |ν〉〈µ|σ(t)|µ1〉〈ν1|

+
∑

µ,µ1,ν,ν1

Rµ1ν1∗
µν |ν1〉〈µ1|σ(t)|µ〉〈ν| −

∑
µ,µ1,ν

Rµ1ν
µν σ(t)|µ1〉〈µ|

−
∑

ν,µ1,µ

Rµ1µ∗
νµ |ν〉〈µ1|σ(t) +

∑
ν,µ1,µ,ν1

Rµ1ν1
νµ |µ〉〈ν|σ(t)|µ1〉〈ν1|

+
∑

ν,µ1,µ,ν1

Rµ1ν1∗
νµ |ν1〉〈µ1|σ(t)|ν〉〈µ| −

∑
ν,µ1,µ

Rµ1µ
νµ σ(t)|µ1〉〈ν|

−
∑

µ,ν1,ν

Rν1ν∗
µν |µ〉〈ν1|σ(t) +

∑
µ,ν1,ν,µ1

Rν1µ1
µν |ν〉〈µ|σ(t)|ν1〉〈µ1|

+
∑

µ,ν1,ν,µ1

Rν1µ1∗
µν |µ1〉〈ν1|σ(t)|µ〉〈ν| −

∑
µ,ν1,ν

Rν1ν
µν σ(t)|ν1〉〈µ|

−
∑

ν,ν1,µ

Rν1µ∗
νµ |ν〉〈ν1|σ(t) +

∑
ν,ν1,µ,µ1

Rν1µ1
νµ |µ〉〈ν|σ(t)|ν1〉〈µ1|

+
∑

ν,ν1,µ,µ1

Rν1µ1∗
νµ |µ1〉〈ν1|σ(t)|ν〉〈µ| −

∑
ν,ν1,µ

Rν1µ
νµ σ(t)|ν1〉〈ν|. (3.35)

This equation looks so complicated because the eigenstates of the molecule are di-
vided into two distinct sets of states. If there was only one variable describing the
state, the equation would look much simpler, but on the other hand would be less
meaningful. In the Born-Oppenheimer approximation the equation will simplify a
little bit due to orthogonal nuclear wavefunctions (see section 3.4).

13I write this here explicitly to stress that the position of the indices in Rµ1ν1
µν is important.

14Since [V + V↔, [V
′
+ V

′
↔, A]] = [V, [V

′
, A]] + [V↔, [V

′
, A]] + [V, [V

′
↔, A]] + [V↔, [V

′
↔, A]].
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3.3 Master equation in the Born-Oppenheimer approx-

imation

In this section the master equation is simplified by using the Born-Oppenheimer
approximation. Again, first the case µ > ν is considered. In the Born-Oppenheimer
the dipole matrix elements assume the following form:

~dµν = fµν
~deg. (3.36)

Here fµν is the Franck Condon integral (see (2.50)). ~deg is the dipole moment of
the electronic wave function. Since there are only two electronic levels, the dipole
moment is either ~deg or ~dge = ~d∗eg. That means that each of the Rµ1ν1

µν is proportional
to |~deg|2.

The master equation becomes:

σ̇(t) =− i

~
[H0, σ] +

|~deg|2

6π2~ε0c3
(−

∑
µ,µ1,ν

rµ1ν∗
µν |µ〉〈µ1|σ(t)

+
∑

µ,µ1,ν,ν1

rµ1ν1
µν |ν〉〈µ|σ(t)|µ1〉〈ν1|+

∑
µ,µ1,ν,ν1

rµ1ν1∗
µν |ν1〉〈µ1|σ(t)|µ〉〈ν|

−
∑

µ,µ1,ν

rµ1ν
µν σ(t)|µ1〉〈µ|) (3.37)

with

rµ1ν1
µν := Θ(µ1 − ν1)Θ(µ− ν)f∗µνfµ1ν1(µ1 − ν1)3. (3.38)

Now one can insert the density operator

σ(t) =
∑
µ3,µ4

σ(t)µ3µ4 |µ3〉〈µ4|+
∑
µ3,ν4

σ(t)µ3ν4 |µ3〉〈ν4|

+
∑
ν3,µ4

σ(t)ν3µ4 |ν3〉〈µ4|+
∑
ν3,ν4

σ(t)ν3ν4 |ν3〉〈ν4|. (3.39)

This results in differential equations describing the time evolution of the matrix
elements of the density operator:
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σ̇µAµB = −i(µA − µB)σµAµB −
|~deg|2

6π2~ε0c3
(
∑
µ,ν

(rµν∗
µAνσµµB + rµν

µBνσµAµ)) (3.40)

σ̇νAνB = −i(νA − νB)σνAνB +
|~deg|2

6π2~ε0c3
(
∑
µ,µ1

(rµ1νB
µνA

+ rµνA∗
µ1νB

)σµµ1) (3.41)

σ̇µAνB = −i(µA − νB)σµAνB −
|~deg|2

6π2~ε0c3
(
∑
µ,ν

rµν∗
µAνσµνB ) (3.42)

σ̇νAµB = −i(νA − µB)σνAµB −
|~deg|2

6π2~ε0c3
(
∑
µ,ν

rµν
µBνσνAµ) (3.43)

It is interesting that the coherences 15 connecting the upper states with lower states
(like σµAνB ) are not coupled with matrix elements connecting levels of the same
electronic state(for example σµAµB ). If one is interested in the probability of finding
a molecule in a specific state (for example |σµAµA |2), these coherences need not to
be regarded.

3.4 Master equation in the Born-Oppenheimer approx-

imation without the constraint µ > ν

Having a closer look at the rab
cd in (3.32), it is clear that if a and b are either both

vibrational states of the excited electronic level or both of them belong to the ground
state, then ~dab = 0. Due to this fact, four of the 16 parts in equation (3.35) are zero
in the Born-Oppenheimer approximation. Because in equation (3.38) the constraint
µ > ν was already explicitly included into rµ1ν1

µν , the same definition for rµ1ν1
µν can

be used in this general case. The Θ-functions insure that no error is made.

With the density operator (3.39), the time dependence of the density matrix is
described by the following set of differential equations:

15Coherences are the non-diagonal matrix elements of the density operator.
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σ̇µAµB =− i(µA − µB)σµAµB −
|~deg|2

6π2~ε0c3
{∑

µ,ν

(rµν∗
µAνσµµB + rµν

µBνσµAµ)

−
∑
ν,ν1

(rν1µB
νµA

+ rνµA∗
ν1µB

)σνν1

}
(3.44)

σ̇νAνB =− i(νA − νB)σνAνB −
|~deg|2

6π2~ε0c3
{∑

ν,µ

(rνµ∗
νAµσννB + rνµ

νBµσνAν)

−
∑
µ,µ1

(rµ1νB
µνA

+ rµνA∗
µ1νB

)σµµ1

}
(3.45)

σ̇µAνB =− i(µA − νB)σµAνB −
|~deg|2

6π2~ε0c3
{∑

µ,ν

(rµν∗
µAνσµνB + rνµ

νBµσµAν)

−
∑
ν,µ

(rµνB
νµA

+ rνµA∗
µνB

)σνµ

}
(3.46)

σ̇νAµB =− i(νA − µB)σνAµB −
|~deg|2

6π2~ε0c3
{∑

µ,ν

(rµν
µBνσνAµ + rνµ∗

νAµσνµB )

−
∑
ν,µ

(rµνA∗
νµB

+ rνµB
µνA

)σµν

}
(3.47)

Since here the constraint µ > ν was dropped, the resulting set of equations above is
invariant under exchange of µ and ν.

3.5 Maximization of the rate to σνAνB
at t = 0

In this section it will be shown that the spontaneous emission rate at the time t = 0
can be enhanced. The enhancement depends on the involved Franck Condon factors.
Sometimes it is rather small, sometimes it can be large. A more quantitatively
discussion can be found in chapter 4.

To simplify the calculation the states are assumed to be only in vibrational levels of
the upper electronic state at time t = 0. In this case equation (3.41) can be used.
At time t = 0 no ν states are populated and therefore no ν → µ transitions can
occur.

σ̇νAνB = −i(νA − νB)σνAνB +
|~deg|2

6π2~ε0c3
(
∑
µ,µ1

(rµ1νB
µνA

+ rµνA∗
µ1νB

)σµµ1)︸ ︷︷ ︸
X : to be maximized

. (3.48)

It is important to recall that in general the σµµ1s cannot be chosen arbitrarily. There
is an additional set of differential equations (namely (3.40)) describing the change
of σµµ1s:

σ̇µAµB = −i(µA − µB)σµAµB −
|~deg|2

6π2~ε0c3
(
∑
µ,ν

(rµν∗
µAνσµµB + rµν

µBνσµAµ))
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But, because the rate to σνAνB is to be maximized for a fixed time t = 0, these
equations need not be considered.

3.5.1 Pure system

First a pure system is considered. At time t = 0 the system is in a superposition of
upper states. Is it possible to enhance the spontaneous emission to σνAνB by using
a superposition of upper states?

Let be

χµ1
µ := χµ1νB

µνA
:= rµ1νB

µνA
+ rµνA∗

µ1νB
. (3.49)

χ is always hermitian and in the case of real Franck Condon factors it is even
symmetric. In addition there is the constraint

∑
µ σµµ − 1 = 0.

Therefore the following expression is to be maximized16:

∑
µµ1

χµ1
µ σµµ1 + λ(

∑
µ

σµµ − 1). (3.50)

Since the system is a pure state, we can use σµµ1 = cµc
∗
µ1

Instead of taking the real and the imaginary part of c as independent variables it is
possible to take c and c∗ as independent.

∂c∗α

(∑
µµ1

χµ1
µ cµc

∗
µ1

+ λ(
∑

µ

cµc
∗
µ − 1)

)
= 0. (3.51)

This results in

∑
µ

χα
µcµ + λcα = 0. (3.52)

This is an eigenvalue problem for the Matrix χα
µ. The eigenvector of the above equa-

tion with the maximal eigenvalue is the superposition of upper states that maximizes
the spontaneous emission rate into level (or more general the coherence) σνAνB .

3.5.2 Mixed system

Let us now consider the case where the system is in a mixed state. In this case
the simple form of σµµ1 can not be assumed. If the maximization effect is a pure
quantum mechanical effect, the result should be the same as in (3.52).

In the matrix notation the problem has the following form:

Tr(χσ) = maximal with the constraint Tr(σ) = 1. (3.53)
16Using the method of Lagrangian multipliers.
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In order to easily determine the trace of the first expression the argument should be
diagonal. If χ is diagonalizable17 , this can be achieved by changing the basis:

A−1(χσ)A = A−1χAA−1σA. (3.54)

Define

σ̃ = A−1σA and χ̃ = A−1χA. (3.55)

Then the problem becomes:

∑
i

χ̃iσ̃ii = maximal with the constraint
∑

i

σ̃ii = 1. (3.56)

Let us assume that there is one index n for which χ̃i is maximal. Then (3.56) is
maximal for σ̃ii = 0 (i 6= n) and σ̃nn = 1 . We know the diagonal elements of σ̃, but
what about the non diagonal elements? Actually these elements are all zero. The
proof is the following:

Tr(σ̃2) =
∑
ij

σ̃ij σ̃ji =
∑
ij

σ̃ij σ̃
∗
ij = |σ̃nn|2︸ ︷︷ ︸

1

+
∑
ij 6=n

|σ̃ij |2. (3.57)

For a pure or mixed system Tr(σ̃2) ≤ 1 always holds. The last term in (3.57) has to
be zero. A sum of positive numbers is only zero if all numbers are zero. Thus, all
non diagonal elements are zero.

Now we know how σ̃ looks like: It has one 1 on the diagonal and all the rest is 0. σ̃

is therefore a projector. But we should know σ instead of σ̃. The Matrix A for the
basis transformation must be found.

χ̃ = A−1χA (3.58)

or

χA = Aχ̃. (3.59)

This means

Aχ̃ = (χ̃1~a1, χ̃2~a2, · · · , χ̃N~aN ) (3.60)

and

χA = (χ~a1,χ~a2, · · · ,χ~aN ). (3.61)

17χχ† = χ†χ
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Here ~a are the column vectors of A. Remember χ̃i are numbers. Now compare the
columns. The problem is equivalent to solve the following eigenproblem.

χ~a = χ̃~a. (3.62)

Remember that the nth eigenvalue is the largest. Then σ̃ is a projector on the nth
basis vector. In our case χ is hermitian. Then all eigenvectors ~ai are orthogonal.(If
eigenvalues are degenerate the eigenvectors can be chosen to be orthogonal.) That
means that the matrix A is orthogonal.

Now we can calculate σ = Aσ̃A−1.

σil =
∑
jk

aij σ̃jka
∗
lk. (3.63)

Because of the special form of σ̃ is j = k = n.

σil max = aina
∗
ln. (3.64)

This can compared with the result in 3.5.1. Obviously it is the same. The conclusion
is that if χ is hermitian, only a pure system can maximize the spontaneous emission
in a special lower state.

In context with chapter 4 it is important to mention, that this procedure maximizes
the absolute transition rate, i.e. the rates to the other levels are not considered. In
chapter 4 the relative rate is calculated.

3.5.3 A simple picture

In the case of ∆ω := µmax − µmin � ωeg (see Fig. 3.2 for the definition) there
is even a simpler way of maximizing the spontaneous emission rate at the time
t = 0. Given these requirements and assuming ν0 := νA = νB, χµ1

µ simply becomes
2ω3

egfµ1ν0f
∗
µν0

.18

χµ1
µ ≈ 2ω3

egfµ1ν0f
∗
µν0
. (3.65)

Keeping this in mind, let us go on to a more handwaving approach of the maximiza-
tion. Let ˇ|µ′〉 =

∑
µ cµ

ˇ|µ〉 be a state representing a superposition of electronically
excited states.19 µ stands for an upper eigenstate. { ˇ|µ〉} forms a basis for a vector
space representing all possible superpositions. Let ν0 be the lower level of interest.
If one picks only one lower and one upper state, the spontaneous emission rate is
predominantly given by the corresponding Franck Condon factor times the energy
difference to the power of three. Given the fact of small ∆ω, the rates of the upper
levels are mainly determined by the corresponding Franck Condon factors. If this

18Here νA and νB define the matrix element σνAνB that should be maximized.
19The ˇ marks that only the nuclear wave functions P (R) are considered.
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idea is applied to the superposition, it is possible to find the superposition that
maximizes the spontaneous emission by maximizing the corresponding overlap 20:

fµ′ν0
=
(∑

µ

cµ ˇ〈µ|
) ˇ|ν0〉 =

∑
µ

cµfµν0 . (3.66)

∂cµ̃

(∑
µ

cµfµν0 − λ
(∑

µ

|cµ|2 − 1
))

= 0. (3.67)

Here again the method of the is applied. The above expression has a maximum

ωeg

∆ω

Figure 3.2: Definition of
ωeg and ∆ω.

for cµ̃ = λ−1fµ̃ν0 . The factor λ insures the normalization
of the cµ̃s. If the set of upper states formed a complete set
of orthonormal eigenvectors for the space of bound states,
then the state ˇ|ν0〉 could be expressed in the basis { ˇ|µ〉}.
Naturally, since all eigenstates are normalized, the maxi-
mal overlap between the superposition and the state ˇ|ν0〉
is assured, when the superposition has the same shape as
ˇ|ν0〉. In this case the spontaneous emission rate to ˇ|ν0〉 is

the same as in a two-level atom. But since the number
of excited eigenstates which are involved is restricted, this
never 21 happens. The best choice for an subset of up-
per eigenstates is therefore to choose such eigenstates that
have a good overlap with ˇ|ν0〉.

In order to verify this argumentation, cµ̃ = λ−1fµ̃ν0 can be
inserted in equation (3.52)∑

µ̃

χα
µ̃cµ̃ + λ

′
cα = 0 (3.68)

of section 3.5.1. ∑
µ̃

2ω3
egfαν0f

∗
µ̃ν0
λ−1fµ̃ν0 + λ

′
λ−1fαν0 = 0. (3.69)

This equation is true for

λ
′
= −2ω3

eg

∑
µ̃

|fµ̃ν0 |2.. (3.70)

The maximal spontaneous emission rate to the level ν0 is therefore:

Γmax =
|~deg|2

6π2~ε0c3
λ
′
=

|~deg|2

3ε0π~2c3
ω3

eg

(∑
µ̃

|fµ̃ν0 |2
)
. (3.71)

20This overlap can be understood as the ”Franck Condon integral” of the superposition.
21Actually it could happen, if ˇ|ν0〉 is exactly a linear combination of the finite subset of upper

states of concern. Then the corresponding Franck Condon factor would be 1, and, since the other

ν levels are orthogonal, there would be no transition into other lower levels.
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ν0

Figure 3.3:
√

ν0

Figure 3.4: X

ν0

Figure 3.5: X

An interesting effect i that the better the overlap between the superposition and the
lower state the smaller is the overlap between the other lower levels. This is true
because the lower levels are all orthogonal.

3.5.4 Discussion of the simple picture

The above approximation should be a good approximation for a lot of molecules.
Nevertheless, if ν0 is a higher vibrational level of the electronic ground state or
higher vibrational levels of the first electronic state are needed, it is possible that
the approximation ∆ω � ωeg is not valid anymore. This is can be seen in Fig. 3.3
- 3.5.

In Fig. 3.4 and Fig. 3.5 the condition ∆ω � ωeg is not satisfied. In these cases
the ω3 dependence of the transition rates is dominant. In Fig. 3.4 for example,
the contribution of the highest µ level to the transition rate is much higher than
the contribution of the lowest one. Anyhow, the relative transition rate is much
more important. This means: How likely is a transition to level ν0 compared to
the likelihood to other lower levels. If a superposition includes higher µ levels,
the transition rate to other ν levels should be enhanced as well, simply due to the
greater energy difference. This is shown numerically in chapter 4 on the basis of a
few examples.
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3.6 Master equation for times t � τvib

So far, all the previous master equations were in the Schrödinger picture. To better
understand the master equations (for example (3.35)) they can be written formally
with the help of super operators22 A and B:

σ̇ = −iAσ + Bσ (3.72)

Here A and B are real matrices. The decay of the system and the coupling between
different matrix elements of σ is described in B. A has matrix elements like µA−µB.
The typical order of magnitude of these matrix elements is therefore 1014. Using
typical electronic dipole moments, B has matrix elements of the order of 107. So it
is clear that the evolution of σ is described by two timescales. Define

τvib := O(
2π

µA − µB
) ≈ 10−14 s. (3.73)

For t � τvib the master equation can be simplified extremely. Unfortunately, this
simplification will also cancel the effect of the superposition of the states.

To show this, the master equation is handled best in the interaction picture . Starting
point is the general master equation (3.35). The interaction picture is achieved in
the same way as in 2.1. Since the radiation field is already traced out, H0 does not
depend on it any more:

H0 = ~
(∑

µ

µ|µ〉〈µ|+
∑

ν

ν|ν〉〈ν|
)
. (3.74)

The usual relation between the density operator in the Schrödinger picture and the
density operator in the interaction picture is assumed.

σ = e−i
H0
~ tσIe

i
H0
~ t or σI = ei

H0
~ tσe−i

H0
~ t (3.75)

22A short introduction on super operators is given in B.1.
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Using this in (3.35), yields

σ̇I = −
∑

µ,µ1,ν

Rµ1ν∗
µν |µ〉〈µ1|σIe

−i(µ1−µ)t +
∑

µ,µ1,ν,ν1

Rµ1ν1
µν |ν〉〈µ|σI|µ1〉〈ν1|ei(µ1−ν1−µ+ν)t

+
∑

µ,µ1,ν,ν1

Rµ1ν1∗
µν |ν1〉〈µ1|σI|µ〉〈ν|e−i(µ1−ν1−µ+ν)t −

∑
µ,µ1,ν

Rµ1ν
µν σI|µ1〉〈µ|ei(µ1−µ)t

−
∑

ν,µ1,µ

Rµ1µ∗
νµ |ν〉〈µ1|σIe

−i(µ1−ν)t +
∑

ν,µ1,µ,ν1

Rµ1ν1
νµ |µ〉〈ν|σI|µ1〉〈ν1|ei(µ1−ν1−ν+µ)t

+
∑

ν,µ1,µ,ν1

Rµ1ν1∗
νµ |ν1〉〈µ1|σI|ν〉〈µ|e−i(µ1−ν1−ν+µ)t −

∑
ν,µ1,µ

Rµ1µ
νµ σI|µ1〉〈ν|ei(µ1−ν)t

−
∑

µ,ν1,ν

Rν1ν∗
µν |µ〉〈ν1|σIe

−i(ν1−µ)t +
∑

µ,ν1,ν,µ1

Rν1µ1
µν |ν〉〈µ|σI|ν1〉〈µ1|ei(ν1−µ1−µ+ν)t

+
∑

µ,ν1,ν,µ1

Rν1µ1∗
µν |µ1〉〈ν1|σI|µ〉〈ν|e−i(ν1−µ1−µ+ν)t −

∑
µ,ν1,ν

Rν1ν
µν σI|ν1〉〈µ|ei(ν1−µ)t

−
∑

ν,ν1,µ

Rν1µ∗
νµ |ν〉〈ν1|σIe

−i(ν1−ν)t +
∑

ν,ν1,µ,µ1

Rν1µ1
νµ |µ〉〈ν|σI|ν1〉〈µ1|ei(ν1−µ1−ν+µ)t

+
∑

ν,ν1,µ,µ1

Rν1µ1∗
νµ |µ1〉〈ν1|e−i(ν1−µ1−ν+µ)tσI|ν〉〈µ| −

∑
ν,ν1,µ

Rν1µ
νµ σI|ν1〉〈ν|ei(ν1−ν)t.

(3.76)

This is the same equation as (3.35) without L0 and with time dependent Franck
Condon factors.23 In the interaction picture, the nuclear wave functions therefore
”wobble” in the potential with different frequencies ωwobble = E

~ . Again four terms
cancel in the Born-Oppenheimer approximation.24

Now a tricky approximation is made. We know, that the exponential functions vary
on a time scale of 10−14 s, but the time scale of the decay itself is of the order of
10−7 s. To obtain σI(t) the equation above must be integrated. Equation (3.76)
can be converted into a coarse grained differential equation . This means, that all
changes of σ on a small time scale are filtered or averaged out. Each term in the
equation above is of the form

σ̇I(t) = aeiωtσI(t). (3.77)

It is possible to convolute this equation with a symmetric normalized25 function, for
example with a Gaussian function:

g(t
′ − t) :=

1√
2π∆

e−
(t
′
−t)2

2∆2 . (3.78)

Important for this function is also that g(t
′ − t) ≈ 0 for |t′ − t| > ∆.

23This equation can be achieved in the same way as the master equation in the interaction picture

in 2.1. It turns out that a simple substitution Rab
cd → Rab

cdei(a−b−c+d)t leads to the interaction picture.
24the terms with e±i(µ1−ν)t and e±i(ν1−µ)t

25g(t
′
− t) = g(t− t

′
) and

∫∞
−∞ dt

′
g(t

′
− t) = 1
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∫ ∞

−∞
dt
′
g(t

′ − t)σ̇I(t
′
) = a

∫ ∞

−∞
dt
′
g(t

′ − t)eiωt
′
σI(t

′
). (3.79)

It is important that τvib ≈ 10−14 s � ∆ � ∆T ≈ 1
|a| ≈ 10−7 s. Here ∆T is the

time scale where σI changes due to spontaneous emission. Assuming σI(t
′
) as well as

σ̇I(t
′
) are slowly varying functions26 on a time scale of ∆ and using the mean value

theorem 27 yields

σ̇I(t̄)
∫ ∞

−∞
dt
′
g(t

′ − t)︸ ︷︷ ︸
1

= aσI(t̄)
∫ ∞

−∞
dt
′
g(t

′ − t)eiωt
′

= σI(t̄)aeiωt

∫ ∞

−∞
dt
′
g(t

′ − t)eiω(t
′−t)

= σI(t̄)aeiωt

∫ ∞

−∞
dτg(τ)eiωτ

= σI(t̄)
a√
2π∆

eiωt

∫ ∞

−∞
dτe−

τ2

2∆2
(
cos (ωτ) + i sin (ωτ)

)
= σI(t̄)aeiωte−

ω2∆2

2 . (3.80)

Here eiωt is is bounded. Because ω2∆2 = 2π∆2

τvib
� 1 the right hand side is zero

except for ω ≈ 0. But in this case eiωte−
ω2∆2

2 = 1. The equation above simplifies to

σ̇I(t̄) = aσI(t̄)δω. (3.81)

2

Here δω is the Kronecker δ. This means δ is a function and not a distribution. For

26σI(t
′
+ ∆) ≈ σI(t

′
), but σI(t

′
+ ∆T ) 6= σI(t

′
)

27Strictly speaking, the mean value theorem only can be applied to strictly monotone functions.

If applied to non monotone but bounded functions, which are constructed out of a finite number

of monotone pieces on a given interval, the mean value theorem results in different possible t̄s. If

anyhow the function goes to zero fast enough (due to g(t
′
− t)) then t̄ ∈ (t−O(∆), t+O(∆)). If the

above integral is exact zero, then t̄ needs not lie in the mentioned interval, but a t̄ can be chosen,

that lies in the interval. Altogether, this means that t̄ is accurate enough for the coarse grained

equation.



Master equation for times t� τvib 45

example δ0 ≡ 1. The result (3.81) can be used to simplify equation (3.76):

σ̇I = −
∑

µ,µ1,ν

Rµ1ν∗
µν |µ〉〈µ1|σIδµ1−µ +

∑
µ,µ1,ν,ν1

Rµ1ν1
µν |ν〉〈µ|σI|µ1〉〈ν1|δµ1−ν1−µ+ν

+
∑

µ,µ1,ν,ν1

Rµ1ν1∗
µν |ν1〉〈µ1|σI|µ〉〈ν|δµ1−ν1−µ+ν −

∑
µ,µ1,ν

Rµ1ν
µν σI|µ1〉〈µ|δµ1−µ

+
∑

ν,µ1,µ,ν1

Rµ1ν1
νµ |µ〉〈ν|σI|µ1〉〈ν1|δµ1−ν1−ν+µ

+
∑

ν,µ1,µ,ν1

Rµ1ν1∗
νµ |ν1〉〈µ1|σI|ν〉〈µ|δµ1−ν1−ν+µ

+
∑

µ,ν1,ν,µ1

Rν1µ1
µν |ν〉〈µ|σI|ν1〉〈µ1|δν1−µ1−µ+ν

+
∑

µ,ν1,ν,µ1

Rν1µ1∗
µν |µ1〉〈ν1|σI|µ〉〈ν|δν1−µ1−µ+ν

−
∑

ν,ν1,µ

Rν1µ∗
νµ |ν〉〈ν1|σIδν1−ν +

∑
ν,ν1,µ,µ1

Rν1µ1
νµ |µ〉〈ν|σI|ν1〉〈µ1|δν1−µ1−ν+µ

+
∑

ν,ν1,µ,µ1

Rν1µ1∗
νµ |µ1〉〈ν1|δν1−µ1−ν+µσI|ν〉〈µ| −

∑
ν,ν1,µ

Rν1µ
νµ σI|ν1〉〈ν|δν1−ν . (3.82)

Inserting the density operator (3.39) yields the matrix elements:

σ̇I
µAµB = −

∑
ν

(RµAν∗
µAν +RµBν

µBν)σI
µAµB

+
∑
ν,ν1

(Rν1µB
νµA

+RνµA∗
ν1µB

)σI
νν1
δν1−ν+µA−µB

(3.83)

σ̇I
νAνB = −

∑
µ

(RνAµ∗
νAµ +RνBµ

νBµ)σI
νAνB

+
∑
µ,µ1

(Rµ1νB
µνA

+RµνA∗
µ1νB

)σI
µµ1

δµ1−µ+νA−νB .

(3.84)

Since the coherences between µ and ν states are not coupled to the σI
νν1

and σI
µµ1

matrix elements, the last two sets of differential equations are not mentioned any-
more. Here it is important to keep in mind, that Rab

cd ∝ Θ(a − b)Θ(c − d). For the
sake of simplicity assume again µ > ν. Then the time evolution of the probabilities
looks like

σ̇I
µµ = −

∑
ν

(Rµν∗
µν +Rµν

µν)σI
µµ (3.85)

σ̇I
νν =

∑
µ

(Rµν
µν +Rµν∗

µν )σI
µµ. (3.86)

The time evolution of the probabilities depends only on the probabilities and not
on coherences. This implies, that a superposition cannot change the spontaneous
emission rate on a time scale t� τvib. If the systems starts in a superposition, the
spontaneous emission rate to a certain level ν is just the sum of all transition rates
of the eigenstates contributing to the superposition.
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It is necessary to keep in mind that the Kronecker δ acts on frequencies not on
indices. This means, that for degenerate upper levels with different(!) nuclear wave
functions, there is a possibility to improve the transition to a special lower state -
even for times t � τvib. It is possible that this kind of enhancement could work
in polyatomic molecules . But to verify this, one must derive a master equation
for polyatomic molecules and must check whether the approximations made in this
chapter are also valid. Anyway it is not unlikely that, even if this was the case, the
corresponding Franck Condon factors for all but one level of the degenerate levels
are zero or very small due to their symmetry properties.

For µA 6= µB or νA 6= νB (this means coherences are considered) the corresponding
equations (3.83) and (3.84) are not as simple as the above equations for the proba-
bilities. Again assuming µ > ν and an initial wave function that is a superposition
of only µ states, yields σ̇I = 0 if the condition described by the Kronecker δ never
applies. When for example µA − µB = ν − ν1, then the Kronecker δ in (3.83) be-
comes 1. For simplicity assume, that exactly one energy difference between the µ
states equals exactly one energy difference of the ν states. Without loss of generality,
assume µC − µD = νA − νB. From (3.84) we know that

σ̇I
νAνB = +(RµDνB

µCνA
+RµCνA∗

µDνB
)σI

µCµD
. (3.87)

That means that, even for times t � τvib, there are coherences between the lower
levels. The density matrix is partially still a superposition, not a completely mixed
state. But is important to recall that the degeneracy does not change the result for
the probabilities.



Chapter 4

Numerical calculations

4.1 Maximization at t = 0 for harmonic potentials

So far, we know that using a superposition instead of a single upper state can
result in an enhanced spontaneous emission rate. Since there so many variables that
influence the spontaneous emission rate (all Franck Condon integrals and all energy
eigenvalues), it is difficult to understand when it is possible to obtain a reasonable
enhancement of the spontaneous emission rate and when not. The Franck Condon
integrals and energy eigenvalue themselves depend on the shape of the upper and the
lower adiabatic potential. A way to circumvent this problem is therefore to choose
some meaningful parameters for the potentials. The change of the spontaneous
emission rate due to the variation of these parameters gives us more information
what kind of potentials are suited to enhance the spontaneous emission rate.

I decided to examine harmonic potentials and chose ∆x := x0e − x0g and ωe as
parameters. ∆x is the distance between the two minima of the potentials and ωe is
the frequency characterizing the upper potential. The frequency of the ground state
ωg and the energy separation of the two harmonic potentials ∆Eeg := V min

e (x0e) −
V min

g (x0g) are fixed values. For these fixed valued I used constants of real molecules,
N2 and CN. The first was chosen, because the energy separation Eeg is quite large
and the second because of the small energy separation.

The form of the two potentials is

Vg/e =
1
2
mω2

g/e(x− x0g/e)
2 + V min

g/e (x0g/e). (4.1)

Here m is the reduced mass of the two nuclei. I chose x0g to be zero and x0e to be
positive.1 Of interest is the maximal relative rate to the absolute ground state |ν0〉.

1The fact that x0e is positive does not matter, because a negative choice would just negate

all Franck Condon integrals. This is true because all harmonic potentials are symmetric. If the

potentials were not symmetric, the sign of ∆x would matter. Think for example of Lennard Jones

potentials (Fig.4.17).

47
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The relative transition rate to |ν0〉 is:

Γrel(superposition of upper levels) :=
Γ0(superposition of upper levels)∑
ν Γν(superposition of upper levels)

. (4.2)

Γν denotes the rate calculated for a specific superposition of upper levels into a
special lower level ν. The ideal superposition of upper levels is of course different for
different potentials, and therefore for different ∆x and ωe. Ideal means in this case

in N2 in calculations

ωeg 9.45661× 1015 9.45661× 1015

ωe 2.7513× 1014 1× 10−14 – 6× 10−14

ωg 4.4428× 1014 4.4428× 1014

∆x 0.189× 10−10m 0 m – 0.3× 10−10m
mass 7.003 amu 7.003 amu

Figure 4.1: N2. Physical quantities used in the calcula-
tions.

the superposition that maxi-
mizes the transition rate to
ν0. The corresponding relative
transition rate Γrel

max becomes
therefore a function of ∆x and
ωe as well. The superposition
can be calculated as described
in section 3.5. The superpo-
sition maximizes the absolute
transition rate to ν0, but the
relative transition rate is dis-
played. This results in some strange effects in the graphs. These effects are discussed
in 4.1.2.

In the following figures Γrel
max(∆x, ωe) is plotted as a three dimensional plot with

the relative transition rate to ν0 on the z-Axes. I always tried to use meaningful
parameters close to real molecules.

4.1.1 Large ωeg

First, molecules with a large electronic energy difference were examined. N2 can be
taken as an example (see Fig. 2.3). The data of N2 can be seen in Fig.4.1. The
intervals for ∆x and ωe were chosen in such a way that the corresponding parameters
of the N2 molecule lie within these intervals. For the energy separation between the
two lowest electronic levels, 9.9727 × 10−19 Joule was used. That corresponds to
ωeg = 9.4566 × 1015. The adiabatic potential curve of the first excited electronic
state of N2 in the harmonic approximation is described by ωe = 2.7513 × 1014. In
the calculations ωe was varied between 1 × 10−14 and 6 × 10−14. In the plots in
Fig.4.4 - 4.7 N2 is therefore located somewhere in the middle. For ωg the value
4.4428×1014 was used. The separation of the two minima (∆x) was varied between
0 and 3 × 10−11m. The difference between the equilibrium internuclear distance
of the upper and the equilibrium internuclear distance of the ground state is for
N2 0.189 × 10−10m. Therefore N2 is represented somewhere in the middle of the
∆x axis in the plots in Fig.4.4 - 4.7. The reduced mass of N2 is 7.003 amu 2

(1.1629× 10−26kg). All the data was taken from [Radzig and Smirnov(1985)].

In the ”simple picture” (see 3.5.3) one would expect a good enhancement for a
superposition of at least 10 levels. From Fig.4.2 it is plausible that there is a super-
position of the first 10 upper levels that produce a strong overlap with ν0. Fig.4.7

21 amu = 1.66053× 10−27kg
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m

Figure 4.2: N2 in the harmonic approx-
imation. All units in SI units. 10 vi-
brational levels of the excited state are
shown.
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Figure 4.3: These potentials correspond
to the right upper corner of Fig.4.4 - 4.7.
All units in SI units. 10 vibrational levels
of the excited state are shown.
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Figure 4.4: Large ωeg. Probability that
spontaneous emission occurs from µ0 to
ν0. 0 m < ∆x < 3× 10−11m, 1× 1014 <

ωe < 6× 1014
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Figure 4.5: Large ωeg. Probability that
spontaneous emission occurs from a su-
perposition of µ0 and µ1 to ν0. 0 m <

∆x < 3×10−11m, 1×1014 < ωe < 6×1014
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Figure 4.6: Large ωeg. Probability that
spontaneous emission occurs from a su-
perposition of µ0- µ4to ν0. 0 m < ∆x <
3× 10−11m, 1× 1014 < ωe < 6× 1014
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Figure 4.7: Large ωeg. Probability that
spontaneous emission occurs from a su-
perposition of µ0 - µ9 to ν0. 0 m < ∆x <
3× 10−11m, 1× 1014 < ωe < 6× 1014

confirms that the ”simple picture” approach is justified in this case. The graph in
Fig.4.7 reveals a considerable enhancement of the relative rate to the level ν0 at the
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coordinates (∆x, ωe) where N2 should be found.

4.1.2 Small ωeg

Figure 4.8: The adiabatic potential curves
for the lowest electronic states of CN . In
my calculations the B state is not con-
sidered at all. The graph is taken from
[Radzig and Smirnov(1985)].

In this section the case ∆ω / ωeg is dis-
cussed. The two lowest states of CN are
taken as an example (see Fig.4.8). The
harmonic approximation made here can
be seen in Fig.4.10.

The parameters can be seen in Fig.4.9.
They differ from the parameters in the
previous section, but the intervals for
∆x and ωe are the same. In the 3D plots
in Fig.4.12 - Fig.4.15 a strange effect ap-
pears. There are parameters ∆x and ωe

for which the relative spontaneous emis-
sion rate gets worse for superpositions
consisting of more states! (Compare for
example Fig.4.13 and Fig.4.15.) This
seems to be very unlogically. The su-
perposition is however not the superpo-
sition that maximizes the relative spon-
taneous emission rate, but the super-
position which maximizes the absolute
spontaneous emission rate. Since the
spontaneous emission rate between two
levels µ and ν is larger the larger the energy difference is, it is possible that a level µn

with a small overlap with the lower level ν0 plays an important role in the superpo-
sition, simply because energy eigenvalue of this level is so high. If the overlap of this
level with the other ν levels is even larger, the relative spontaneous emission rate to
ν0 becomes smaller when this additional upper level is taken into the superposition.
In other words: the absolute rate to ν0 is enhanced, but the absolute rate to the
other levels is enhanced even more. This results in a smaller relative rate to ν0.

4.1.3 Discussion

The 3D plots of the previous section allow some conclusions. For a given num-
ber of states in the superposition, the spontaneous emission rate depends strongly
on the distance ∆x between the potentials. An explanation is the following: if
∆x is so large that none of the wave functions of the superposition have a signif-
icant overlap with the lower level, then any superposition has a very small over-
lap as well. This is the case when only the exponential outer part of the os-
cillator eigenfunction (which is ∝ exp (−x2/(2σ2))) do overlap. As soon as the
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Figure 4.10: Potentials for the CN
molecule in the harmonic approximation.
All units in SI units.
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Figure 4.11: Small ωeg. Worst case.
Overlap between the wave functions is
very small due to large ∆x and large ωe.
This corresponds to the upper right cor-
ner of Fig.4.12 - Fig.4.15
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Figure 4.12: Small ωeg. Probability that
spontaneous emission occurs from µ0 to
ν0. 0 m < ∆x < 3× 10−11m, 1× 1014 <

ωe < 6× 1014
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Figure 4.13: Small ωeg. Probability that
spontaneous emission occurs from a su-
perposition of µ0 and µ1 to ν0. 0 m <

∆x < 3×10−11m, 1×1014 < ωe < 6×1014
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Figure 4.14: Small ωeg. Probability that
spontaneous emission occurs from a su-
perposition of µ0- µ4to ν0. 0 m < ∆x <
3× 10−11m, 1× 1014 < ωe < 6× 1014
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Figure 4.15: Small ωeg. Probability that
spontaneous emission occurs from a su-
perposition of µ0 - µ9 to ν0. 0 m < ∆x <
3× 10−11m, 1× 1014 < ωe < 6× 1014
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in CN in calculations

ωeg 1.74149× 1015 1.74149× 1015

ωe 3.4143× 1014 1× 10−14 – 6× 10−14

ωg 3.8965× 1014 3.8965× 1014

∆x 0.061× 10−10m 0 m – 0.3× 10−10m
mass 6.47 amu 6.47 amu

Figure 4.9: CN. Physical quantities used in the calcu-
lations.

distance ∆x is small enough
to ensure a overlap of the
”inner part” of the oscilla-
tor eigenfunctions, the sponta-
neous emission rate of the su-
perposition rises considerably
and stays large for smaller ∆x.

The ωe-dependence can be in-
terpreted even simpler. A large
ωe results in a narrow upper
wave function. If the broadest

upper eigenfunction does not cover all of the lower wave function, the superposition
cannot do better. Therefore the maximization becomes better for smaller ωe. This
corresponds to a shallow potential.

4.1.4 Implementation

Most calculations were done by a C++ program that I wrote. Mathematica was
used to calculate the coefficients of the oscillator eigenfunctions. The coefficients of

x,ω)χ(∆

(∆ x,ω)

rescaling oscillator eigenfunction

calculating rate for all lower levels

calculating relative rate

loop:

calculating

solving eigenproblem

calculating Franck Condon integrals

for each

Figure 4.16: Flow chart of the program that
calculates the data for the 3D plots.

the monomials of e
1
2
x2

os[n, x] were just
written in a file and read in from my
C++ program.3

The program then produced the ex-
act solution of the harmonic poten-
tials by shifting and rescaling the cor-
responding oscillator eigenfunctions de-
pending on the parameters ∆x and ωe.
The integration itself was done numer-
ically by a Gauss Legendre Integration
(see. [Press et al.(1994)]). Since all
wave functions can be chosen to be
real, all Franck Condon integrals are
real. These Franck Condon integrals
are used to calculate the elements of
the matrix χ.

Recall the definition of χ:

χµ1νB
µνA

= rµ1νB
µνA

+ rµνA∗
µ1νB

3Here os[n, x] are just the normalized oscillator eigenfunctions.

os[n, x] := e−
1
2 x2 1

√
2nn!π

1
4

HermiteH[n, x].

HermiteH is a Mathematica function for Hermite polynomials.
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with

rµ1ν1
µν = Θ(µ1 − ν1)Θ(µ− ν)f∗µνfµ1ν1(µ1 − ν1)3.

This matrix has the dimensionm, wherem is the number of upper levels. The indices
νA and νB are parameters that specify the lower level (or if νA 6= νB the coherence) to
that the spontaneous emission rate should be maximized. The eigenvector of χ with
the largest eigenvalue represents the superposition that maximizises the rate.4(See
also 3.5.) We are only interested in the probability and not in the coherences. This
implies νA = νB. The relative rate to ν0 is

Γrel
max =

Γ0(max. superpos.)∑
ν Γν(max. superpos.)

=

∑
µµ1

χµ1ν0
µν0 aµa

∗
µ1∑

ν

∑
µµ1

χµ1ν
µν aµa∗µ1

. (4.3)

Here aµ := a(ν0)µ is the µth component of the eigenvector of χ with the largest
eigenvalue.

DSYEVR 5, a LAPACK routine, was used to find the eigenvalues and the eigen-
vectors of the matrix χ. For further information about LAPACK have a look at
[LAPACK(2002)]. LAPACK routines are Fortran routines. The integration of
DSYEVR into the C++ program was done with the help of the Template Nu-
merical Toolkit (TNT ). The home page of TNT can be found at [TNT(2002)].
Unfortunately the TNT project seems to stagnate.

4.2 Example: Maximization for molecules with

Lennard Jones potentials

In this section the transition rates for Lennard Jones potentials are calculated.
Lennard Jones potentials are not symmetric and the separation of the energy lev-
els is not constant. If the symmetry and the equally spaced energy levels of the
harmonic potentials in the previous section produced some special effect, this effect
cannot occur here. The Lennard Jones potential has the following form:

V (r) = 4ε
((σ
r

)12 − (σ
r

)6)
. (4.4)

The minimum of this potential is at (2
1
6σ,−ε).

4.2.1 Large ωeg

For the case ωeg � ∆ω I used again the N2 molecule. The minimum of the ground
state adiabatic potential curve of N2 is X(1.0977× 10−10 m,−1.536× 10−18 Joule).
The first excited state has a minimum at A(1.287× 10−10 m,−0.528× 10−18 Joule).
Here I put the zero line of the energy 1.536 × 10−18Joule above the minimum of

4The elements of the vector are the coefficients of the superposition.
5DSYEVR is specialized in solving eigenproblems of symmetric matrices.
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Figure 4.17: Lennard Jones potential fit
for a N2-like molecule. 10 upper and 24
lower levels are displayed.

Figure 4.18: Lennard Jones potential fit
for a N2-like molecule. 20 upper and 34
lower levels are displayed. Here the limits
of my calculations can be seen. The most
upper levels are perturbed by the borders
of the integration area.

µ coefficient
0 -0.0199706 1 0.0497566
2 -0.0921149 3 0.145751
4 -0.208351 5 0.277065
6 -0.348873 7 0.420842
8 -0.490309 9 0.554976

Figure 4.19: N2-like molecule. Coefficients
for the superposition of 10 levels.

the potential of the ground state and fur-
ther assumed that the dissociation energies
for the X and the A state are the same.6

The latter assumption is based on Fig. 2.3.
The dissociation energies of X and A states
in diatomic molecules are in general not the
same. The calculation yields Fig.4.17. The
fit is not very good, because in the real
molecule (see Fig. 2.3) there are 24 ν states
below the lowest µ state in contrast to 15
states in Fig.4.17. However, I discuss these
potentials here, because it is a nice example that reveals some important features of

6I assumed εX = 1.536× 10−18 Joule and εA = εX − ~ωeg = 0.528× 10−18Joule
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the maximization of the spontaneous emission rate.

First a superposition of 10 levels is examined. In this case 24 ν levels are be-
low the highest µ level. This can also be seen in Fig.4.17. The superposition

µ coefficient µ coefficient
0 -0.00856741 1 0.0211726
2 -0.0388972 3 0.061105
4 -0.0867675 5 0.114673
6 -0.143575 7 0.172295
8 -0.199787 9 0.225166

10 -0.247727 11 0.266941
12 -0.282446 13 0.294026
14 -0.301595 15 0.305178
16 -0.30489 17 0.300917
18 -0.293499 19 0.28292

Figure 4.20: N2-like molecule. Coeffi-
cients for the superposition of 20 levels.

that maximizes the spontaneous emission to
ν0 can be seen in Fig.4.19. The calculated
relative spontaneous emission rate from µ0

to ν0 is 3.998 × 10−5. The relative spon-
taneous emission rate of the superposition
µ0 − µ9 to ν0 is 0.01488.

It is possible to improve the result by tak-
ing 20 upper levels. Then 34 ν levels are
lying below level µ19 (Fig.4.18).7 With the
help of 20 levels, the relative transition rate
can be enhanced up to 0.05285 (again com-
pared to 3.998×10−5 for a µ0-ν0 transition).
From the shape of the potentials it is clear
that the transition rate cannot be enhanced
significantly more. The very steep border
of the upper potential forbids an overlap of
the upper wave functions with the left part of the ν0 ground state function. If the
minimum of the upper potential was located at smaller R, the overlap would be
much better. The spontaneous emission rate cannot be enhanced considerably in
molecules that have a steep repulsive part in the upper potential8 and whose equi-
librium internuclear distance of the upper state is much larger than the equilibrium
distance of the lower potential.

4.2.2 CN-like molecules

A better approximation can be achieved, when at the minimum r0 = 2−
1
6σ of the

Lennard Jones potential the curvature9 has the same value as in the harmonic po-
tential. If V (r) = 4ε

((
σ
r

)12 −
(

σ
r

)6), then V
′′
(r) = 4ε

(
156σ12

r14 − 42σ6

r8

)
. And

V
′′
(r0) = 36ε

r2
0

. Therefore the curvature at r0 and the knowledge of r0 is enough
to determine the Lennard Jones potential. From Fig.4.9 it is also known that
Eeg = ~ωeg = 1.8365 × 10−19 Joule. From [Radzig and Smirnov(1985)] we get
rX0 = 1.172× 10−10m and rA0 = 1.233× 10−10m. Now it is possible to calculate the

7 Unfortunately, for such high lying levels the algorithm to find the energy eigenvalues is not

ideal. The borders of the integration area shift the energy eigenvalues and change the eigenfunctions

of the uppermost levels. For more information about the implementation have a look at 4.2.3. One

could have chosen a more sophisticated calculation, but the results are anyway only qualitative.
8for example the left part of the upper potential in Fig.4.18
9The curvature of a harmonic potential at its minimum is mω2

e/g. With m = 1.0743 × 10−26kg

for the reduced mass of CN.
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Figure 4.21: Lennard Jones potential fit for a
CN-like molecule. 5 upper and 12 lower levels
are displayed.

µ coefficients
0 0.486306
1 -0.496819
2 0.45907
3 -0.412899
4 0.368031

Figure 4.22: Coefficients for the su-
perposition that maximizes the rate
to ν0 in the CN-like molecule.

Lennard Jones potentials for the two lowest levels of CN.10

They are also shown in Fig.4.21. The relative transition rate to ν0 can be almost
doubled with only five upper levels. The µ0 → ν0 rate is 0.560712. If the super-
position of µ0 – µ4 is taken, the transition rate can be enhanced to 0.944259. The
coefficients of the superposition are shown in Fig. 4.22.

4.2.3 Implementation

The Lennard Jones Potentials for the N2-like molecule were calculated by using r0
and reading the dissociation limit from Fig.2.3. For CN a better approximation was
obtained by using the curvature at r0. The potentials then were discretized by taking
the potential at 5000 equally spaced points. The space in between the points was
∆ = 10−13m for both molecules. For the first molecule the interval (0.5× 10−10m -

10I write them here explicitly, because they are also used in 4.3:

VX(r) = 2.48946× 10−18
(1.679079× 10−120

r12
− 1.29579× 10−60

r6

)
Joule m

VA(r) = 1.8365× 10−19 + 2.11558× 10−18
(3.08671× 10−120

r12
− 1.75690× 10−60

r6

)
Joule m
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5.5 × 10−10m) was used. For the CN molecule (0.8 × 10−10m - 5.8 × 10−10m) was
used. Then the Laplace operator was replaced by the discrete Laplace operator

Laplacian =
1

∆2


−2 1 0 · · · · · ·
1 −2 1 0 · · ·
0 1 −2 1 0
· · · 0 1 −2 1
· · · · · · 0 1 −2

 . (4.5)

This form can be derived from the discrete definition of the derivative:

f
′
(x0) =

f(x0 + ∆
2 )− f(x0 − ∆

2 )
∆

(4.6)

f
′′
(x0) =

f
′
(x0 + ∆

2 )− f
′
(x0 − ∆

2 )
∆

=
1

∆2

(
f(x0 + ∆)− 2f(x0) + f(x0 −∆)

)
. (4.7)

The resulting Hamilton equation is just an algebraic equation. The eigenvalues and
eigenvectors were found using DSTEVR, a LAPACK routine which is specialized on
real tridiagonal matrices. The resulting eigenvectors were just multiplied to get the
Franck Condon integrals.11 The Franck Condon integrals and the energy eigenvalues
were written to a file. A C++ program, similar to the program in 4.1.4, used this file
to calculate the matrix χ. Again the LAPACK routine DSYEVR was used to find
the eigen vectors that represent the superposition that maximizes the transition.

The relative rate to ν0 was calculated in the same manner as in 4.1.4.

4.3 Time dependent calculation for a CN-like molecule

So far the relative transition rate was only calculated at the time t = 0. In section 3.6
it was shown that for large times the effect of the superposition should get smaller
and smaller. In this section the population Pν0(t) of ν0 is calculated as a function of
time. The differential equation (3.47) is integrated numerically with the help of the
Runge-Kutta algorithm. The result can be seen in Fig.4.23 and in Fig.4.24. The
latter is just a magnified plot of the same graph.

The numerical calculations are in perfect agreement with the results from section
3.6. For t � τvib the spontaneous emission rate to ν0 should be just additive, i.e.
the rate to ν0 should be just the sum

∑
µ Γµ

ν0 , where Γµ
ν0 is just the rate of one single

state µ to ν0. Exactly this behavior can be seen in Fig.4.23.

The transition rate of the superposition differs only on a time scale τvib significantly
from the rates of single states. On this time scale it should be possible to enhance
(or suppress) spontaneous emission to special levels. Often the enhancement or
suppression can be even considerable.

11inner product
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Figure 4.23: The population of level ν0 of CN for t ∈ (0s, 5 × 10−13s). The straight lines
stand for the population if the molecule initially is in state µ ∈ [0, 4]. In this case, there is
no interference and the time evolution of the population is just like 1 − e−Γµ

ν0
t. The wavy

line is the line when the molecule is initially in the calculated superposition. For large times
it must lie between the straight lines. Exactly this can be seen here.

4.3.1 Implementation

The integration of the differential equation (3.47) was performed by a self written
C++ program. The Liouville super operator was expressed in its matrix form .12

The resulting set of coupled first order linear differential equations was integrated
by a simple fourth-order Runge-Kutta algorithm13. The Liouville operator in the
case of our CN molecule of the previous section has the dimension K = M2 +N2 =
52 + 122 = 169. The formula for the dimension K is derived in appendix B. M is
the number of states contributing to the superposition and N is the number of lower
states. When five upper levels are considered, it is necessary to include 12 lower
levels, because a transition to each of these levels is possible energetically(see also
Fig.4.21). The the calculation a step size of ∆ = 10−17s was used.

12Actually, there does not exist a special matrix form, different representations are possible. In

our case the matrix can even have a lower dimension than in the general case. For details have a

look at appendix B.
13There are different fourth-order Runge-Kutta algorithms. The algorithm used here is the ”clas-

sical” one (see [Press et al.(1994)]).
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Figure 4.24: The population of ν0 of CN for t ∈ (0s, 5× 10−14s).
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Chapter 5

Conclusion

In my calculations I demonstrated that spontaneous emission to a special lower
vibrational state in a molecule can be sometimes considerably enhancened. The
enhancement depends crucially on the involved Franck Condon factors. An good
enhancement is only possible if there exists a superposition of wave functions in the
upper electronic state that has a significant overlap with the lower wave function of
concern. For large energy separation of the electronic levels Eeg

1 the superposition
that maximizes the transition rate to ν0 is easy to find. The coefficient for a level ˇ|µ〉
in the superposition is just the scalar product of this level with ˇ|ν0〉.2 In the general
case, the problem turned out to be a simple eigenvalue problem for the matrix χ (see
(3.52)) which comprises only the involved Franck Condon integrals and the energy
eigenvalues of the respective states. The enhancement described in this paragraph
however only works for times t� τvib. (see (3.73)). This is the time scale on which
the wave functions of the upper states start to de-phase considerably due to different
energy eigenvalues.

In chapter 4 some example calculations for the maximization effect above were car-
ried out. First the adiabatic potentials of the molecule were considered to be har-
monic and the maximization of the relative spontaneous emission rate to the lower
ground state was calculated for different harmonic potentials using the displace-
ment ∆x of the two minima and the frequency ωe as parameters.3 This yielded
some qualitative results about the question when it is possible to enhance the spon-
taneous emission rate to the lower ground state.

Later the Lennard Jones potential was used to approximate the adiabatic potentials
of N2 and CN.4 The corresponding Franck Condon integrals were calculated and
again the transition rate to the lower ground state maximized by a superposition.
For CN this worked quite well. With a superposition of five upper levels the relative

1 compared with the energy separation between the lowest excited state and the highest popu-

lated excited state
2Again the ˇ stresses that this is the nuclear wave function P (R). The electronic part of the

wave function is not included.
3The potential of the upper state was assumed to be a harmonic potential with energy eigenvalues

that are separated by ~ωe.
4The calculation was done without rotational levels.
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spontaneous emission rate could be enhanced from approximately 56% to 94%. But
for N2 even ten upper levels could not form a superposition that produced a relative
spontaneous emission rate larger than 6%. A closer look at the N2-potentials re-
vealed that due to the steep rise of the potential for small R the upper wave functions
have a small overlap with the lower wave function. The latter has a smaller mean
internuclear distance R̄ and a considerable part of the wave function lies beyond the
steep rise of the upper potential. This results in a small overlap for all upper wave
functions with the ground state wave function of the lower electronic state. (See
Fig. 4.17.)

At the end of chapter 4 the population of the ground state of the lower level of CN is
calculated as a function of time. As expected the transition rate cannot be enhanced
on a time scale much larger than τvib. It turns out that the different energies of the
upper levels in the superposition result in a rather complicated oscillatory variation
around the expected transition rate which is only the sum of the transition rates
of the single upper levels weighted with the corresponding Franck Condon factors
times the coefficient of the superposition.

Finally, the question should be posed if the calculation can be used in some ex-
perimental setup or what kind of further refinement of the model could be thought
of. It should be stressed that even with the present model a modification of the
spontaneous emission rate on the time scale τvib is possible. Unfortunately τvib is
around 10−14 s and therefore very small. The most natural way of reducing the
time constraint, is just to look for molecules with very shallow adiabatic excited
state potentials. This would result in a larger τvib. It can however not be expected
that this can change τvib more than one or two orders of magnitude.

Another way to remove the time constraint could be to couple a strong laser to the
molecule. As shown in appendix A, a weak laser cannot change the spontaneous
emission rate noticeable. Short laser pulses could be used to counter the de-phasing
of the wave functions of the upper levels. Unfortunately this laser pulses would
have to be very short (order of 10−16 – 10−15 s or shorter) and should be repeated
with a frequency of approximately 1014 s−1. In a review article Steinmeyer et al.
[Steinmeyer et al.(1999)] mention that sub-10-fs laser (pulse duration less than 10−14

s) already exist. But to my knowledge no laser can repeat the pulses fast enough.

Another possible way could be to couple a strong lasers permanently to the system
to counteract the de-phasing. Here the problem is probably that continuous wave
lasers are not strong enough. All the above thoughts on strong laser interaction are
not based on any calculations of my part. It is possible that the above suggestions
do not even work theoretically, despite experimentally.

The summary of my thesis is that spontaneous emission enhancement in vibrating
molecules is in principle possible, but probably only on very small time scale.



Appendix A

Spontaneous emission in weak

laser fields

The following section discusses the reason why it is feasible to work without dressed
states even when a laser is involved. It will be shown that when the photon-atom
interaction 1 is not too large, the term describing the laser field can be added as an
extra term to the master equation. In order to simplify the calculation a two level
atom is considered.

The following Hamiltonian describes the system:

H = ~
ωA

2
σ3 + ~Ω(S+e

−iωLt + S−e
iωLt) + ~

∑
k

ωka
†
kak + ~

∑
k

(gkS+ak + g∗kS−a
†
k).

(A.1)

Here the first part is the energy of the atom, the second part the interaction of the
atom with a classical field (the laser field), the third part the energy of the photon
field (in our case the vacuum), and the last part the interaction between the photon
field and the atom. S+ and S− are lowering and raising operators for the two level
atom:

S+ =
(

0 1
0 0

)
S− =

(
0 0
1 0

)
. (A.2)

The basis is chosen such that

~e =
(

1
0

)
~g =

(
0
1

)
(A.3)

are the excited state e and the ground state g of the two-level atom.
1as well as the photon-molecule interaction
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To show the additive character of the laser field term, equation (A.1) will first be
expressed in the interaction picture. Then the master equation in the interaction
picture will be derived (using results from 2.1). The assumptions mentioned above
lead to approximations during the derivation of the master equation. Finally the
master equation will be transformed back to the Schrödinger picture and the additive
character of the laser field term will become apparent.

The interaction of the photon field with the atom is considered as the perturbation.
The laser field is included into H0. Since the considered photon field is the vacuum
field, this is a sensible assumption. The calculations are much simpler if a time
independent H0 is used. In order to obtain this, a unitary transformation U is
applied to equation (A.1).

U =
(
e−iωLt 0

0 1

)
. (A.4)

U has the following useful properties:

U †S+e
−iωLtU = S+ (A.5)

U †S−e
iωLtU = S− (A.6)

U †σ3U = σ3 (A.7)

−i~U †U̇ = −ωL

2
(σ3 + 1). (A.8)

Application of this unitary transformation to a state in the Hamilton equation yields
in

i~(U̇ |ϕ〉+ U |ϕ̇〉) = HU |ϕ〉.

This is equivalent to

i~|ϕ̇〉 = (U †HU − i~U †U̇)|ϕ〉 =: H̃|ϕ〉 (A.9)

with

H̃ =~
(
− ωL

2
1− ∆

2
σ3 + Ω(S+ + S−) +

∑
k

ωka
†
kak

+
∑

k

(gkS+e
iωLtak + g∗kS−e

−iωLta†k)
)
. (A.10)

Here is ∆ = ωL − ωA is the detuning of the laser frequency with respect to the
eigenfrequency of the atom. For the sake of simplicity, the ˜ on H̃ will be dropped.
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The dressed state picture can be understood as the interaction picture where the
laser field is incorporated in H0:

H0 = HAL +HR (A.11)

HAL = −~
ωL

2
1− ∆

2
σ3 + Ω(S+ + S−) (A.12)

HR = ~
∑

k

a†kakωk. (A.13)

The Hamiltonian has therefore the following form:

H =

H0︷ ︸︸ ︷
(−~

ωL

2
1− ∆

2
σ3 + Ω(S+ + S−))︸ ︷︷ ︸
HAL

+ ~
∑

k

a†kakωk︸ ︷︷ ︸
HR

+ ~
∑

k

(
gkS+e

iωLak + g∗kS−e
−iωLa†k

)
︸ ︷︷ ︸

Hint

. (A.14)

Application of UI := e−iH0t = e−iHALte−iHRt on the state in the Schrödinger equation
results in the Schrödinger equation in the interaction picture.

i~|Ψ̇〉 =
(
− i~U †

I U̇I + U †
I H̃UI

)
|Ψ̄〉

=
(
−H0 +H0

)
|Ψ〉+ U †

I

Hint︷ ︸︸ ︷
~
∑

k

(
gkS+e

iωLak + g∗kS−e
−iωLa†k

)
UI︸ ︷︷ ︸

HI
int

|Ψ〉. (A.15)

A closer look at H0 reveals that HAL only works on the two dimensional subspace
describing the atom. HR only affects the radiation field. In addition HAL and HR

commute. When S+ and S− are expressed in the basis of the eigenvectors of HAL,
the effect of the transformation UIS on S+ or S− in Hint is simple.

HAL has the eigenvalues

E±
~

= −ωL

2
±

√(
∆
2

)2

+ Ω2︸ ︷︷ ︸
W

always W ≥ ∆
2

(A.16)

and the eigenvectors:

~ϕAL
± =

1√
2W

 Ω√
W±∆

2

±
√
W ± ∆

2

 . (A.17)
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Therefore the matrix for the basis transformation to the basis of eigenvectors of HAL

has the following form:

A =
1√
2W


Ω√

W+∆
2

√
W + ∆

2

Ω√
W−∆

2

−
√
W − ∆

2

 . (A.18)

The inverse transformation looks like this:

A−1 =
1√
2W

 Ω√
W+∆

2

Ω√
W−∆

2√
W + ∆

2 −
√
W − ∆

2

 . (A.19)

Now S+ and S− can be expressed in the basis of the eigenvectors of HAL:

SAL
+ = AS+A−1 SAL

− = AS−A−1 (A.20)

SAL
+ =

(
Ω

2W
1
2( ∆

2W − 1)
1
2( ∆

2W + 1) − Ω
2W

)
SAL
− =

(
Ω

2W
1
2( ∆

2W + 1)
1
2( ∆

2W − 1) − Ω
2W

)
. (A.21)

In Dirac notation this means:2

S+ =
Ω

2W
(
|+〉〈+| − |−〉〈−|

)
+

1
2
( ∆
2W

− 1
)
|+〉〈−|+ 1

2
( ∆
2W

+ 1
)
|−〉〈+| (A.22)

S− =
Ω

2W
(
|+〉〈+| − |−〉〈−|

)
+

1
2
( ∆
2W

+ 1
)
|+〉〈−|+ 1

2
( ∆
2W

− 1
)
|−〉〈+| (A.23)

Now S+ and S− are expressed in terms of |±〉〈±|. The states |±〉 are the eigenstates
of HAL.3

Now it is necessary to calculate the effect of U †
I and UI on ak and |±〉〈±| which

appear in Hint. Since U †
I appears on the left hand side and UI on the right hand

side, only the parts of UI that do not commute with ak or |±〉〈±| must be considered.
The other parts cancel each other. For the ak this is the radiation part e−iHRt of
UI. For |±〉〈±| it is e−iHALt.

2The above index AL was used to stress that SAL
± is expressed in the basis of the eigenvectors

of HAL. The Dirac notation however is a basis free notation.
3In the old basis the states |±〉 are ~ϕAL

± .
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U †
I akUI = eiωkta†kakake

−iωkta†kak

=
∞∑

n=0

(iωkt)n

n!
Kn K0 = ak and Kn+1 = [a†kak,Kn]

= e−iωktak. (A.24)

Expressed in |+〉〈+| and |−〉〈−| HAL has the following form:

HAL = ~
(ωL

2
+W

(
|+〉〈+| − |−〉〈−|

))
. (A.25)

With the help of this e−iHALt can be simplified even more4:

e−iHALt = e−
i
2
ωLte−itW

(
|+〉〈+|−|−〉〈−|

)
= e−

i
2
ωLt
(
|+〉〈+|e−itW + |−〉〈−|eitW

)
. (A.26)

U †
I |±〉〈±|UI can easily be calculated:

U †
I |+〉〈+|UI = |+〉〈+|

U †
I |−〉〈−|UI = |−〉〈−|

U †
I |+〉〈−|UI = e2itW |+〉〈−|

U †
I |−〉〈+|UI = e−2itW |−〉〈+|. (A.27)

Using (A.22) for S+ and (A.23) for S−, the Schrödinger equation (A.15) becomes in
the interaction picture:

i~|Ψ̇I〉 = HI
int|ΨI〉 (A.28)

with

HI
int =

∑
k

{
gke

−i(ωk−ωL)takSI
+(t) + g∗ke

i(ωk−ωL)ta†kSI
−(t)

}
(A.29)

and

SI
−(t) =

Ω
2W

(
|+〉〈+| − |−〉〈−|

)
+

1
2
( ∆
2W

− 1
)
|+〉〈−|e2itW +

1
2
( ∆
2W

+ 1
)
|−〉〈+|e−2itW

(A.30)

SI
+(t) =SI

−
†
(t) =

Ω
2W

(
|+〉〈+| − |−〉〈−|

)
+

1
2
( ∆
2W

+ 1
)
|+〉〈−|e2itW

+
1
2
( ∆
2W

− 1
)
|−〉〈+|e−2itW . (A.31)

4since |±〉〈±| are projectors
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With the definition of the Liouville super operator

LI =
1
~
[HI

int, · · · ] (A.32)

the result for the master equation in the interaction picture (see equation (2.27))
can be used:

|0R〉〈0R|σ̇I = −PLI(t)
∫ t

0
dτLI(t− τ)|0R〉〈0R|σI(t− τ)

= − 1
~2
|0R〉〈0R|TrR[HI

int(t),
∫ t

0
dτ [HI

int(t− τ), |0R〉〈0R|σI(t− τ)]].

(A.33)

This reduces to (see also chapter 3):

σ̇I =
1
~2

∫ t

0
dτ
(
− 〈0R|HI

int(t)H
I
int(t− τ)|0R〉〈0R|σI(t− τ)|0R〉

+ 〈1R|HI
int(t)|0R〉〈0R|σI(t− τ)HI

int(t− τ)|1R〉

+ 〈1R|HI
int(t− τ)|0R〉〈0R|σI(t− τ)HI

int(t)|1R〉

− 〈0R||0R〉〈0R|σI(t− τ)HI
int(t− τ)HI

int(t)|0R〉
)

=− 1
~2

∫ t

0
dτ
(
G(τ)SI

+(t)SI
−(t− τ)σI(t− τ)−G(−τ)SI

−(t)σI(t− τ)SI
+(t− τ)

−G(τ)SI
−(t− τ)σI(t− τ)SI

+(t) +G(−τ)σI(t− τ)SI
+(t− τ)SI

−(t)
)

(A.34)

with

G(τ) =
∑
ks

|gk|2e−i(ωk−ωL)τ . (A.35)

In the Markov approximation the border of the time integral is replaced by ∞ and
the evolution of the reduced density operator is mainly determined by H0. In the
interaction picture this means σI(t− τ) ≈ σI(t). The above equation becomes

σ̇I =− 1
~2

∫ ∞

0
dτ
(
G(τ)SI

+(t)SI
−(t− τ)σI(t)−G(−τ)SI

−(t)σI(t)SI
+(t− τ)

−G(τ)SI
−(t− τ)σI(t)SI

+(t) +G(−τ)σI(t)SI
+(t− τ)SI

−(t)
)
. (A.36)

Inserting SI
−(t) and SI

+(t) by using (A.30) and (A.31) results in many terms.
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Now the approximation for weak laser fields comes into consideration. Recall the
definition of W and ∆:

W =

√
Ω2 +

(∆
2
)2 ∆ =ωL − ωA.

Weak laser field means small Ω. However, the detuning ∆ can be arbitrary large.
Then W is not small. The above mentioned terms are proportional to

∑
ks

|gk|2e±i(ωk−ωL±(2W or 0))τ . (A.37)

First consider the case with ∆ having the same order of magnitude as Ω. That means
the detuning ∆ is small. Then W is small as well and ωL ≈ ωA. The τ -dependence
of the terms can be described as:

∑
ks

|gk|2e−i(ωk−ωA)τ . (A.38)

For large ∆ but small Ω the same holds, but the proof is much more cumbersome.
In the approximation Ω � ∆, W becomes

W =

√
Ω2 +

(∆
2
)2 =

∣∣∣∆
2

∣∣∣√√√√√1 +
(2Ω

∆
)2︸ ︷︷ ︸

�1

≈
∣∣∣∆
2

∣∣∣. (A.39)

Let us calculate the first term in A.34:

SI
+(t)SI

−(t− τ) =
Ω2

4W 2

(
|+〉〈+|+ |−〉〈−|

)
+

Ω
4W

( ∆
2W

− 1
)
|−〉〈+|e2iWt − Ω

4W
( ∆
2W

+ 1
)
|−〉〈+|e−2iWt

+ e2iWτ
( ∆
2W

− 1
)
|+〉〈−|

(1
4
( ∆
2W

− 1
)

+
Ω

4W
e−2iWt

)
− e−2iWτ

( ∆
2W

+ 1
)
|−〉〈+|

(1
4
( ∆
2W

+ 1
)

+
Ω

4W
e2iWt

)
(A.40)

Here the first three terms can be neglected because Ω/W � 1. One of the two last
terms cancels as well, depending on the sign of ∆. For positive ∆ is ∆

2W − 1 ≈ 0.
For negative ∆ cancels ∆

2W + 1.

Inserting (A.40) into equation (A.34) yields
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σ̇I = − 1
~2

∫ ∞

0
dτ×

{∑
ks

|gk|2e−i(ωk−ωL)τ
(

+ e2iWτ
( ∆
2W

− 1
)
|+〉〈−|

(1
4
( ∆
2W

− 1
)

+
Ω

4W
e−2iWt

)

− e−2iWτ
( ∆
2W

+ 1
)
|−〉〈+|

(1
4
( ∆
2W

+ 1
)

+
Ω

4W
e2iWt

))
+ · · ·

(A.41)

Assume ∆ to be positive. In this case the first term of equation (A.41) cancels. The
second remains

σ̇I = − 1
~2

∫ ∞

0
dτ
{
−
∑
ks

|gk|2e−i(ωk−ωL+ωL−ωA)τ
( ∆
2W

+ 1
)
|−〉〈+|

(
· · ·
))

+ · · · .

(A.42)

A negative choice of ∆ yields

σ̇I = − 1
~2

∫ ∞

0
dτ
{
−
∑
ks

|gk|2e−i(ωk−ωL+ωL−ωA)τ
( ∆
2W

− 1
)
|+〉〈−|

(
· · ·
))

+ · · · .

(A.43)

The frequency of the laser field drops out. Now the integration is done in the same
manner as in chapter 3. The part∫ ∞

0
dτe−i(ωk−ωA)τ ,

which is obtained for small and for large ∆, results in a δ function δ(ωk − ωA).5

The coupling constant gk is proportional to
√
ωk and the integration over k yields a

factor ω2
k. With the delta function this results in a term that is proportional to ω3

A.
For the other three terms similar calculations exist. The spontaneous emission rate
is

Γ ∝ ω3
A. (A.44)

Thus, the spontaneous emission rate does not depend on the laser field, but only on
the transition of the atom.

We know now that weak laser fields cannot change the spontaneous emission rate
considerably. The effect of the laser can just be added to the master equation
without laser. The laser only generates an oscillation between the two states, but
does not change the spontaneous emission rate. 2

5The principal value of the integral results again in a frequency shift and does not contribute to

the spontaneous emission (see also chapter 3).



Appendix B

The Liouville super operator for

the model

B.1 Super operators

A super operator is an operator which acts on an operator and not on a state. The
Liouville operator

iLρ =
1
~
[H, ρ]. (B.1)

is an example for a super operator acting on a density operator. The density operator
is the argument. If the operator on which the super operator acts can be expressed
as a finite dimensional matrix and the super operator is linear as well, there is a
simple way of understanding the nature of super operators. Actually, the super
operator can be understood as being a matrix. In this case, the operator must be
described as a vector. To further clarify this principle a short example is given:

σ :=
(
σ00 σ01

σ10 σ11

)
(B.2)

(B.3)

L :=
1
~
[H, · · · ]. (B.4)

If one writes σ as a vector, then L can be expressed as a matrix. Then Lσ becomes
Lmatσvec with

σvec :=


σ00

σ01

σ10

σ11

 (B.5)
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and

Lmat :=
1
~


0 −H10 H01 0

−H01 H00 −H11 0 H01

H10 0 H11 −H00 −H10

0 H10 −H01 0

 . (B.6)

Here

H =
(
H00 H01

H10 H11

)
(B.7)

was assumed. Therefore, in this example H is a linear operator that acts on a two
dimensional complex vector space. It is easy to verify that each component of the
vector σvec in Lmatσvec transforms like the corresponding matrix element of σ in Lσ.

It is important that a super operator is in general not hermitian or unitary even if
the operators used in it1 have these properties.

B.2 The super operator of the model

In section 4.3 the time evolution for the density matrix was calculated. This was
done by using the Runge-Kutta algorithm. If the Liouville super operator is used in
its matrix form (see appendix B.1), then the algorithm can be implemented easily.

From equation (3.47) it is clear, that σµµ-like matrix elements are not coupled to
σµν-like matrix elements. Or in short hand notation

σ =

 σµa1µa2
σµb1

νb2

σνc1µc2
σνd1

νd2

 (B.8)

only the boxed matrix elements are coupled. Therefore it is not necessary to take
σµν elements into account. This fact reduces the dimensionality of the corresponding
”Liouville matrix”. The vector ~σvec can then be written as

~σvec =



σµ0µ0

σµ0µ1

· · ·
σµM−1µM−1

σν0ν0

· · ·
σνN−1νN−1


=



σvec
0

σvec
1

· · ·

· · ·
σvec

K−1


. (B.9)

1here H
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Here M denotes the number of vibrational levels in the excited electronic state and
N the number of vibrational levels in the electronic ground state. The corresponding
vector space has the dimension K = M2 +N2.2

When it comes to the implementation, it must be possible to differentiate between
the index µ and the frequency µ. For the index, I used m for upper states and
n for lower states. The frequencies are still written as µ and ν. To simplify the
representation of Lmat, I introduced some new variables.3

µL(a) := µmL(a) mL(a) := (int)a/M (B.10)

µR(a) := µmR(a) mR(a) := a mod M (B.11)

νL(a) := νnL(a) nL(a) := (int)(a−M2)/N (B.12)

νR(a) := νnR(a) nR(a) := (a−M2) mod N (B.13)

Here a is the index in σvec
a . The above definitions make it easy to assign the vector

element σvec
a to the corresponding matrix element of σ.

a < M2 then σvec
a = σmL(a)mR(a) (B.14)

a ≥M2 then σvec
a = σnL(a)nR(a). (B.15)

The definitions on the right of (B.10) to (B.13) provide rules how to map the index
a onto the two indices µ and µ1 in σµµ1 or onto the two indices ν and ν1 in σνν1 .
The definitions on the left of (B.10) to (B.13) calculate the frequencies that belong
to the indices. The subscript L stands for ”left index” and is therefore in the usual
notation convention the row-index. The subscript R stands for ”right index”, the
column index.

If for example the molecule has two upper levels and one lower level, then the density
matrix is

σ =

 σµµ σµµ1 σµν

σµ1µ σµ1µ1 σµ1ν

σνµ σνµ1 σνν

 . (B.16)

In vector form this matrix becomes

~σvec =


σµµ

σµµ1

σµ1µ

σµ1µ1

σνν

 =


σvec

0

σvec
1

σvec
2

σvec
3

σvec
4

 . (B.17)

2If all σ matrix elements were taken into account, the vector space would have the dimension

(M + N)2 = M2 + N2 + 2MN .
3Here mod stands for modulus and (int) means ”entire value of”.
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In this case M = 2 and N = 1 and for example mR(a = 1) = µ1 and nR(a = 4) = ν.
nR(a = 3) or mL(a = 4) are in this example not defined.4

With the help of these variables, the Liouville super operator which belongs to
equation (3.47) can be written in matrix form:

Lab =δab

{
− iΘ(M2 − a− 1

2
)(µL(a)− µR(a))− iΘ(a−M2 +

1
2
)(νL(a)− νR(a))

}
− D̄Θ(M2 − a− 1

2
)Θ(M2 − b− 1

2
)
{
δ(mR(a)−mR(b))

∑
ν

(
r
µL(b)ν
µL(a)ν

)∗
+ δ(mL(a)−mL(b))

∑
ν

r
µR(b)ν
µR(a)ν

}

+ D̄Θ(M2 − a− 1
2
)Θ(b−M2 +

1
2
)
{
r
νR(b)µR(a)
νL(b)µL(a) +

(
r
νL(b)µL(a)
νR(b)µR(a)

)∗}
+ D̄Θ(a−M2 +

1
2
)Θ(M2 − b− 1

2
)
{
r
µR(b)νR(a)
µL(b)νL(a) +

(
r
µL(b)νL(a)
µR(b)νR(a)

)∗}
− D̄Θ(a−M2 +

1
2
)Θ(b−M2 +

1
2
)
{
δ(nR(a)− nR(b))

∑
µ

(
r
νL(b)µ
νL(a)µ

)∗
+ δ(nL(a)− nL(b))

∑
µ

r
νR(b)µ
νR(a)µ

}
(B.18)

Expressions like δ(mR(a) −mR(b)) are zero except for mR(a) −mR(b) = 0. Since
mR(a) and mR(b) are integers, the δ stands for Kronecker’s δ. Θ stands for the
Heaviside function . The 1/2 is just added to avoid any ambiguity concerning
Θ(0). Any real number between 0 and 1 could have been added. D̄ stands for
|~deg|2/6ε0π~2c3. It is just a constant.

The above matrix form of the Liouville super operator looks very complicated. Nev-
ertheless, used in a computer language like C or C++, the super operator can simply
be expressed with some nested loops and if statements.

4mR(a) and mL(a) are only defined for a < M2 and nL(a) and nR(a) only for a ≥ M2.
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